44 research outputs found

    Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Get PDF
    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of defores- tation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ("Caatinga") near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was 74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (<0.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for -60% of the aboveground pools of N and P. Three experi- mental fires were conducted during the 1989 burning season. In these treatments con- sumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost during combustion processes. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. This indicates greater amounts of these nutrients were volatilized (i.e., greater ecosystem losses occurred) with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, which was quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. Based upon the measured losses of nutrients from these single slash-burning events, it would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less

    Biodiversity on Broadway - Enigmatic Diversity of the Societies of Ants (Formicidae) on the Streets of New York City

    Get PDF
    Each year, a larger proportion of the Earth's surface is urbanized, and a larger proportion of the people on Earth lives in those urban areas. The everyday nature, however, that humans encounter in cities remains poorly understood. Here, we consider perhaps the most urban green habitat, street medians. We sampled ants from forty-four medians along three boulevards in New York City and examined how median properties affect the abundance and species richness of native and introduced ants found on them. Ant species richness varied among streets and increased with area but was independent of the other median attributes measured. Ant assemblages were highly nested, with three numerically dominant species present at all medians and additional species present at a subset of medians. The most common ant species were the introduced Pavement ant (Tetramorium caespitum) and the native Thief ant (Solenopsis molesta) and Cornfield ant (Lasius neoniger). The common introduced species on the medians responded differently to natural and disturbed elements of medians. Tetramorium caespitum was most abundant in small medians, with the greatest edge/area ratio, particularly if those medians had few trees, whereas Nylanderia flavipes was most abundant in the largest medians, particularly if they had more trees. Many of the species encountered in Manhattan were similar to those found in other large North American cities, such that a relatively small subset of ant species probably represent most of the encounters humans have with ants in North America

    Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’

    Get PDF

    Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem

    No full text
    Dryland ecosystems have long been considered to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations of both in soils under plants relative to interspace soils. We examined the distribution of soil resources in two plant communities (dominated by either the shrub Coleogyne ramosissima or the grass Stipa hymenoides) at two locations. Interspace soils were covered either by early successional biological soil crusts (BSCs) or by later successional BSCs (dominated by nitrogen (N)-fixing cyanobacteria and lichens). For each of the 8 plant type×crust type×locations, we sampled the stem, dripline, and 3 interspace distances around each of 3 plants. Soil analyses revealed that only available potassium (Kav) and ammonium concentrations were consistently greater under plants (7 of 8 sites and 6 of 8 sites, respectively). Nitrate and iron (Fe) were greater under plants at 4 sites, while all other nutrients were greater under plants at less than 50% of the sites. In contrast, calcium, copper, clay, phosphorus (P), and zinc were often greater in the interspace than under the plants. Soil microbial biomass was always greater under the plant compared to the interspace. The community composition of N-fixing bacteria was highly variable, with no distinguishable patterns among microsites. Bacterivorous nematodes and rotifers were consistently more abundant under plants (8 and 7 sites, respectively), and fungivorous and omnivorous nematodes were greater under plants at 5 of the 8 sites. Abundance of other soil biota was greater under plants at less than 50% of the sites, but highly correlated with the availability of N, P, Kav, and Fe. Unlike other ecosystems, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity in soils of this ecosystem is likely due to (1) interspace soils covered with BSCs, (2) little incorporation of above-ground plant litter into soils, and/or (3) root deployment patterns

    The Mosaic Genome of Anaeromyxobacter dehalogenans Strain 2CP-C Suggests an Aerobic Common Ancestor to the Delta-Proteobacteria

    Get PDF
    ©2008 Thomas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pone.0002103Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the 5.01 Mb strain 2CP-C genome substantiated that this organism is a myxobacterium but shares genotypic traits with the anaerobic majority of the delta-Proteobacteria (i.e., the Desulfuromonadales). Reflective of its respiratory versatility, strain 2CP-C possesses 68 genes coding for putative c-type cytochromes, including one gene with 40 heme binding motifs. Consistent with its relatedness to the myxobacteria, surface motility was observed in strain 2CP-C and multiple types of motility genes are present, including 28 genes for gliding, adventurous (A-) motility and 17 genes for type IV pilus-based motility (i.e., social (S-) motility) that all have homologs in Myxococcus xanthus. Although A. dehalogenans shares many metabolic traits with the anaerobic majority of the delta- Proteobacteria, strain 2CP-C grows under microaerophilic conditions and possesses detoxification systems for reactive oxygen species. Accordingly, two gene clusters coding for NADH dehydrogenase subunits and two cytochrome oxidase gene clusters in strain 2CP-C are similar to those in M. xanthus. Remarkably, strain 2CP-C possesses a third NADH dehydrogenase gene cluster and a cytochrome cbb3 oxidase gene cluster, apparently acquired through ancient horizontal gene transfer from a strictly anaerobic green sulfur bacterium. The mosaic nature of the A. dehalogenans strain 2CP-C genome suggests that the metabolically versatile, anaerobic members of the delta-Proteobacteria may have descended from aerobic ancestors with complex lifestyles

    100 Years of the American Economic Review : The Top 20 Articles

    No full text
    This paper presents a list of the top 20 articles published in the American Economic Review during its first 100 years. This list was assembled in honor of the AER 's one-hundredth anniversary by a group of distinguished economists at the request of AER 's editor. A brief description accompanies the citations of each article.
    corecore