133 research outputs found
Spectroscopic parameters for silacyclopropynylidene, SiC, from extensive astronomical observations toward CW Leo (IRC +10216) with the Herschel satellite
A molecular line survey has been carried out toward the carbon-rich
asymptotic giant branch star CW Leo employing the HIFI instrument on board of
the Herschel satellite. Numerous features from 480 GHz to beyond 1100 GHz could
be assigned unambiguously to the fairly floppy SiC molecule. However,
predictions from laboratory data exhibited large deviations from the observed
frequencies even after some lower frequency data from this survey were
incorporated into a fit. Therefore, we present a combined fit of all available
laboratory data together with data from radio-astronomical observations.Comment: 7 pages, 1 figure, J. Mol. Spectrosc., appeared; CDMS links corrected
(version 2; current version: 3; may be updated later this year
A human organoid model of aggressive hepatoblastoma for disease modeling and drug testing
Hepatoblastoma is the most common childhood liver cancer. Although survival has improved significantly over the past few decades, there remains a group of children with aggressive disease who do not respond to current treatment regimens. There is a critical need for novel models to study aggressive hepatoblastoma as research to find new treatments is hampered by the small number of laboratory models of the disease. Organoids have emerged as robust models for many diseases, including cancer. We have generated and characterized a novel organoid model of aggressive hepatoblastoma directly from freshly resected patient tumors as a proof of concept for this approach. Hepatoblastoma tumor organoids recapitulate the key elements of patient tumors, including tumor architecture, mutational profile, gene expression patterns, and features of Wnt/ÎČ-catenin signaling that are hallmarks of hepatoblastoma pathophysiology. Tumor organoids were successfully used alongside non-tumor liver organoids from the same patient to perform a drug screen using twelve candidate compounds. One drug, JQ1, demonstrated increased destruction of liver organoids from hepatoblastoma tumor tissue relative to organoids from the adjacent non-tumor liver. Our findings suggest that hepatoblastoma organoids could be used for a variety of applications and have the potential to improve treatment options for the subset of hepatoblastoma patients who do not respond to existing treatments
A Formação Serra Alta, Permiano, no centro-leste do Estado de São Paulo, Bacia do Paranå, Brasil
- âŠ