1,313 research outputs found
Dual time scales in simulated annealing of a two-dimensional Ising spin glass
We apply a generalized Kibble-Zurek out-of-equilibrium scaling ansatz to
simulated annealing when approaching the spin-glass transition at temperature
of the two-dimensional Ising model with random couplings.
Analyzing the spin-glass order parameter and the excess energy as functions of
the system size and the annealing velocity in Monte Carlo simulations with
Metropolis dynamics, we find scaling where the energy relaxes slower than the
spin-glass order parameter, i.e., there are two different dynamic exponents.
The values of the exponents relating the relaxation time scales to the system
length, , are for the relaxation of the order
parameter and for the energy relaxation. We argue that the
behavior with dual time scales arises as a consequence of the entropy-driven
ordering mechanism within droplet theory. We point out that the dynamic
exponents found here for simulated annealing are different from the
temperature-dependent equilibrium dynamic exponent , for which
previous studies have found a divergent behavior; . Thus, our study shows that, within Metropolis dynamics, it is easier
to relax the system to one of its degenerate ground states than to migrate at
low temperatures between regions of the configuration space surrounding
different ground states. In a more general context of optimization, our study
provides an example of robust dense-region solutions for which the excess
energy (the conventional cost function) may not be the best measure of success.Comment: 13 pages, 16 figure
Order-Disorder Transition in a Two-Layer Quantum Antiferromagnet
We have studied the antiferromagnetic order -- disorder transition occurring
at in a 2-layer quantum Heisenberg antiferromagnet as the inter-plane
coupling is increased. Quantum Monte Carlo results for the staggered structure
factor in combination with finite-size scaling theory give the critical ratio
between the inter-plane and in-plane coupling constants.
The critical behavior is consistent with the 3D classical Heisenberg
universality class. Results for the uniform magnetic susceptibility and the
correlation length at finite temperature are compared with recent predictions
for the 2+1-dimensional nonlinear -model. The susceptibility is found
to exhibit quantum critical behavior at temperatures significantly higher than
the correlation length.Comment: 11 pages (5 postscript figures available upon request), Revtex 3.
NMR relaxation rates for the spin-1/2 Heisenberg chain
The spin-lattice relaxation rate and the spin echo decay rate
for the spin- antiferromagnetic Heisenberg chain are
calculated using quantum Monte Carlo and maximum entropy analytic continuation.
The results are compared with recent analytical calculations by Sachdev. If the
nuclear hyperfine form factor is strongly peaked around the
predicted low-temperature behavior [, ] extends up to temperatures as high as . If has significant weight for there are large
contributions from diffusive long-wavelength processes not taken into account
in the theory, and very low temperatures are needed in order to observe the
asymptotic forms.Comment: 9 pages, Revtex 3.0, 5 uuencoded ps figures To appear in Phys. Rev.
B, Rapid Com
Striped phase in a quantum XY-model with ring exchange
We present quantum Monte Carlo results for a square-lattice S=1/2 XY-model
with a standard nearest-neighbor coupling J and a four-spin ring exchange term
K. Increasing K/J, we find that the ground state spin-stiffness vanishes at a
critical point at which a spin gap opens and a striped bond-plaquette order
emerges. At still higher K/J, this phase becomes unstable and the system
develops a staggered magnetization. We discuss the quantum phase transitions
between these phases.Comment: 4 pages, 4 figures. v2: only minor change
Persistent superfluid phase in a three-dimensional quantum XY model with ring exchange
We present quantum Monte Carlo simulation results on a quantum S=1/2 XY model
with ring exchange (the J-K model) on a three-dimensional simple cubic lattice.
We first characterize the ground state properties of the pure XY model,
obtaining estimations for the energy, spin stiffness and spin susceptibility at
T=0 in the superfluid phase. With the ring exchange, we then present simulation
data on small lattices which suggests that the superfluid phase persists to
very large values of the ring exchange K, without signatures of a phase
transition. We comment on the consequences of this result for the search for
various exotic phases in three dimensions.Comment: 4 pages, 4 figure
- …