18 research outputs found

    Fluid balance and phase angle as assessed by bioelectrical impedance analysis in critically ill patients:a multicenter prospective cohort study

    Get PDF
    Background: Bioelectrical impedance analysis (BIA) is a validated method to assess body composition in persons with fluid homeostasis and reliable body weight. This is not the case during critical illness. The raw BIA markers resistance, reactance, phase angle, and vector length are body weight independent. Phase angle reflects cellular health and has prognostic significance. We aimed to assess the course of phase angle and vector length during intensive care unit (ICU) admission, and determine the relation between their changes (Δ) and changes in body hydration. Methods: A prospective, dual-center observational study of adult ICU patients was conducted. Univariate and multivariable regression analyses were performed, including reactance as a marker of cellular mass and integrity and total body water according to the Biasioli equation (TBWBiasioli) and fluid balance as body weight independent markers of hydration. Results: One hundred and fifty-six ICU patients (mean ± SD age 62.5 ± 14.5 years, 67% male) were included. Between days 1 and 3, there was a significant decrease in reactance/m (−2.6 ± 6.0 Ω), phase angle (−0.4 ± 1.1°), and vector length (−12.2 ± 44.3 Ω/m). Markers of hydration significantly increased. Δphase angle and Δvector length were both positively related to Δreactance/m (r2 = 0.55, p < 0.01; r2 = 0.38, p < 0.01). Adding ΔTBWBiasioli as explaining factor strongly improved the association between Δphase angle and Δreactance/m (r2 = 0.73, p < 0.01), and Δvector length and Δreactance/m (r2 = 0.77, p < 0.01). Conclusions: Our results show that during critical illness, changes in phase angle and vector length partially reflect changes in hydration

    Visceral obesity measured using computed tomography scans:No significant association with mortality in critically ill patients

    Get PDF
    Introduction: The association between obesity and outcome in critical illness is unclear. Since the amount of visceral adipose tissue(VAT) rather than BMI mediates the health effects of obesity we aimed to investigate the association between visceral obesity, BMI and 90-day mortality in critically ill patients. Method: In 555 critically ill patients (68% male), the VAT Index(VATI) was measured using Computed Tomography scans on the level of vertebra L3. The association between visceral obesity, BMI and 90-day mortality was investigated using univariable and multivariable analyses, correcting for age, sex, APACHE II score, sarcopenia and muscle quality. Results: Visceral obesity was present in 48.1% of the patients and its prevalence was similar in males and females. Mortality was similar amongst patients with and without visceral obesity (27.7% vs 24.0%, p = 0.31). The corrected odds ratio of 90-day mortality for visceral obesity was 0.667 (95%CI 0.424–1.049, p = 0.080). Using normal BMI as reference, the corrected odds ratio for overweight was 0.721 (95%CI 0.447–1.164 p = 0.181) and for obesity 0.462 (95%CI 0.208–1.027, p = 0.058). Conclusion: No significant association of visceral obesity and BMI with 90-day mortality was observed in critically ill patients, although obesity and visceral obesity tended to be associated with improved 90-day mortality.</p

    Correction to: Amino acid loss during CVVH in critically ill patients

    No full text
    After publication of this supplement, it was brought to our attention that abstract A333 contains a serious error

    Monitoring muscle mass using ultrasound: a key role in critical care

    No full text
    PURPOSE OF REVIEW: The loss of muscle mass in critically ill patients contributes to morbidity and mortality, and results in impaired recovery of physical functioning. The number of publications on the topic is increasing. However, there is a lack of consistent methodology and the most optimal methodology remains unclear, hampering its broad use in clinical practice. RECENT FINDINGS: There is a large variety of studies recently published on the use of ultrasound for assessment of muscle mass. A selection of studies has been made, focusing on monitoring of muscle mass (repeated measurements), practical aspects, feasibility and possible nutrition and physical therapy interventions. In this review, 14 new small (n = 19-121) studies are categorized and reviewed as individual studies. SUMMARY: The use of ultrasound in clinical practice is feasible for monitoring muscle mass in critically ill patients. Assessment of muscle mass by ultrasound is clinically relevant and adds value for guiding therapeutic interventions, such as nutritional and physical therapy interventions to maintain muscle mass and promote recovery in critically ill patients

    Monitoring muscle mass using ultrasound: a key role in critical care

    No full text
    PURPOSE OF REVIEW: The loss of muscle mass in critically ill patients contributes to morbidity and mortality, and results in impaired recovery of physical functioning. The number of publications on the topic is increasing. However, there is a lack of consistent methodology and the most optimal methodology remains unclear, hampering its broad use in clinical practice. RECENT FINDINGS: There is a large variety of studies recently published on the use of ultrasound for assessment of muscle mass. A selection of studies has been made, focusing on monitoring of muscle mass (repeated measurements), practical aspects, feasibility and possible nutrition and physical therapy interventions. In this review, 14 new small (n = 19-121) studies are categorized and reviewed as individual studies. SUMMARY: The use of ultrasound in clinical practice is feasible for monitoring muscle mass in critically ill patients. Assessment of muscle mass by ultrasound is clinically relevant and adds value for guiding therapeutic interventions, such as nutritional and physical therapy interventions to maintain muscle mass and promote recovery in critically ill patients

    Early high protein provision and mortality in ICU patients including those receiving continuous renal replacement therapy

    No full text
    Background: Findings on the association between early high protein provision and mortality in ICU patients are inconsistent. The relation between early high protein provision and mortality in patients receiving CRRT remains unclear. The aim was to study the association between early high protein provision and hospital and ICU mortality and consistency in subgroups. Methods: A retrospective cohort study was conducted in 2618 ICU patients with a feeding tube and mechanically ventilated ≥48 h (2003–2016). The association between early high protein provision (≥1.2 g/kg/day at day 4 vs. 50%, results remained robust in all groups except for patients receiving CRRT. Conclusions: Early high protein provision is associated with lower hospital and ICU mortality in ICU patients, including CRRT-receiving patients. There was no association for septic patients

    Indirect calorimetry in critically ill mechanically ventilated patients: Comparison of E-sCOVX with the deltatrac

    No full text
    Background & aims: Indirect calorimetry is recommended to measure energy expenditure (EE) in critically ill, mechanically ventilated patients. The most validated system, the Deltatrac® (Datex-Ohmeda, Helsinki, Finland) is no longer in production. We tested the agreement of a new breath-by-breath metabolic monitor E-sCOVX® (GE healthcare, Helsinki, Finland), with the Deltatrac. We also compared the performance of the E-sCOVX to commonly used predictive equations. Methods: We included mechanically ventilated patients eligible to undergo indirect calorimetry. After a stabilization period, EE was measured simultaneously with the Deltatrac and the E-sCOVX for 2 h. Agreement and precision of the E-sCOVX was tested by determining bias, limits of agreement and agreement rates compared to the Deltatrac. Performance of the E-sCOVX was also compared to four predictive equations: the 25 kcal/kg, Penn State University 2003b, Faisy, and Harris–Benedict equation. Results: We performed 29 measurements in 16 patients. Mean EE-Deltatrac was 1942 ± 274 kcal/day, and mean EE-E-sCOVX was 2177 ± 319 kcal/day (p < 0.001). E-sCOVX overestimated EE with a bias of 235 ± 149 kcal/day, being 12.1% of EE-Deltatrac. Limits of agreement were −63 to +532 kcal/day. The 10% and 15% agreement rates of EE-E-sCOVX compared to the Deltatrac were 34% and 72% respectively. The bias of E-sCOVX was lower than the bias of the 25 kcal/kg-equation, but higher than bias of the other equations. Agreement rates for E-sCOVX were similar to the equations. The Faisy-equation had the highest 15% agreement rate. Conclusion: The E-sCOVX metabolic monitor is not accurate in estimating EE in critically ill mechanically ventilated patients when compared to the Deltatrac, the present reference method. The E-sCOVX overestimates EE with a bias and precision that are clinically unacceptable
    corecore