3 research outputs found

    Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    Full text link
    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane

    Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    No full text
    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane

    Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    No full text
    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane
    corecore