44 research outputs found

    Effects of Age, Cognition, and Neural Encoding on the Perception of Temporal Speech Cues

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Older adults commonly report difficulty understanding speech, particularly in adverse listening environments. These communication difficulties may exist in the absence of peripheral hearing loss. Older adults, both with normal hearing and with hearing loss, demonstrate temporal processing deficits that affect speech perception. The purpose of the present study is to investigate aging, cognition, and neural processing factors that may lead to deficits on perceptual tasks that rely on phoneme identification based on a temporal cue – vowel duration. A better understanding of the neural and cognitive impairments underlying temporal processing deficits could lead to more focused aural rehabilitation for improved speech understanding for older adults. This investigation was conducted in younger (YNH) and older normal-hearing (ONH) participants who completed three measures of cognitive functioning known to decline with age: working memory, processing speed, and inhibitory control. To evaluate perceptual and neural processing of auditory temporal contrasts, identification functions for the contrasting word-pair WHEAT and WEED were obtained on a nine-step continuum of vowel duration, and frequency-following responses (FFRs) and cortical auditory-evoked potentials (CAEPs) were recorded to the two endpoints of the continuum. Multiple linear regression analyses were conducted to determine the cognitive, peripheral, and/or central mechanisms that may contribute to perceptual performance. YNH participants demonstrated higher cognitive functioning on all three measures compared to ONH participants. The slope of the identification function was steeper in YNH than in ONH participants, suggesting a clearer distinction between the contrasting words in the YNH participants. FFRs revealed better response waveform morphology and more robust phase-locking in YNH compared to ONH participants. ONH participants also exhibited earlier latencies for CAEP components compared to the YNH participants. Linear regression analyses revealed that cortical processing significantly contributed to the variance in perceptual performance in the WHEAT/WEED identification functions. These results suggest that reduced neural precision contributes to age-related speech perception difficulties that arise from temporal processing deficits

    Age-Related Temporal Processing Deficits in Word Segments in Adult Cochlear-Implant Users

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Aging may limit speech understanding outcomes in cochlear-implant (CI) users. Here, we examined age-related declines in auditory temporal processing as a potential mechanism that underlies speech understanding deficits associated with aging in CI users. Auditory temporal processing was assessed with a categorization task for the words dish and ditch (i.e., identify each token as the word dish or ditch) on a continuum of speech tokens with varying silence duration (0 to 60 ms) prior to the final fricative. In Experiments 1 and 2, younger CI (YCI), middle-aged CI (MCI), and older CI (OCI) users participated in the categorization task across a range of presentation levels (25 to 85 dB). Relative to YCI, OCI required longer silence durations to identify ditch and exhibited reduced ability to distinguish the words dish and ditch (shallower slopes in the categorization function). Critically, we observed age-related performance differences only at higher presentation levels. This contrasted with findings from normal-hearing listeners in Experiment 3 that demonstrated age-related performance differences independent of presentation level. In summary, aging in CI users appears to degrade the ability to utilize brief temporal cues in word identification, particularly at high levels. Age-specific CI programming may potentially improve clinical outcomes for speech understanding performance by older CI listeners

    Effects of Reducing Low-Frequency Amplification on Consonant Perception in Quiet and Noise

    No full text

    Phoneme Feature Perception in Noise by Normal-Hearing and Hearing-Impaired Subjects

    No full text

    Summary Publication Statistics for 1997

    No full text

    Demographic differences in hearing thresholds compared to suprathreshold measures

    No full text
    African American race and female sex are identified as protective for hearing sensitivity. The mechanisms supporting this protection are not fully understood and it is unclear whether similar mechanisms explain suprathreshold processing. Using robust linear and linear mixed-effect models, the best predictors of hearing sensitivity were contrasted with the best predictors of suprathreshold measures in younger and older listeners. The listeners (N=121) had thresholds <25 dB HL up to 3 kHz. Self-identified race (African American or Caucasian) and sex were hypothesized to moderate outcomes on hearing sensitivity, time-compressed speech recognition, pulse rate discrimination and auditory brainstem responses. Support for the hypotheses occurred if race and sex were among the predictors resulting in the models with lowest mean absolute error. The hypotheses were partially supported. However, confounding factors included 3 kHz hearing sensitivity (which moderated the association between sex, race, and Wave V latency) and episodic memory (which moderated the association between processing speed, sex, and pulse rate discrimination). Moreover, the hearing sensitivity benefit associated with African American listeners did not extend to suprathreshold measures. The biological mechanisms associated with race and sex, thought to underly differences in hearing sensitivity, may be inadequate to explain differences in auditory temporal processing

    Detection and Recognition of Asynchronous Auditory/Visual Speech: Effects of Age, Hearing Loss, and Talker Accent

    No full text
    This investigation examined age-related differences in auditory-visual (AV) integration as reflected on perceptual judgments of temporally misaligned AV English sentences spoken by native English and native Spanish talkers. In the detection task, it was expected that slowed auditory temporal processing of older participants, relative to younger participants, would be manifest as a shift in the range over which participants would judge asynchronous stimuli as synchronous (referred to as the “AV simultaneity window”). The older participants were also expected to exhibit greater declines in speech recognition for asynchronous AV stimuli than younger participants. Talker accent was hypothesized to influence listener performance, with older listeners exhibiting a greater narrowing of the AV simultaneity window and much poorer recognition of asynchronous AV foreign-accented speech compared to younger listeners. Participant groups included younger and older participants with normal hearing and older participants with hearing loss. Stimuli were video recordings of sentences produced by native English and native Spanish talkers. The video recordings were altered in 50 ms steps by delaying either the audio or video onset. Participants performed a detection task in which the judged whether the sentences were synchronous or asynchronous, and performed a recognition task for multiple synchronous and asynchronous conditions. Both the detection and recognition tasks were conducted at the individualized signal-to-noise ratio (SNR) corresponding to approximately 70% correct speech recognition performance for synchronous AV sentences. Older listeners with and without hearing loss generally showed wider AV simultaneity windows than younger listeners, possibly reflecting slowed auditory temporal processing in auditory lead conditions and reduced sensitivity to asynchrony in auditory lag conditions. However, older and younger listeners were affected similarly by misalignment of auditory and visual signal onsets on the speech recognition task. This suggests that older listeners are negatively impacted by temporal misalignments for speech recognition, even when they do not notice that the stimuli are asynchronous. Overall, the findings show that when listener performance is equated for simultaneous AV speech signals, age effects are apparent in detection judgments but not in recognition of asynchronous speech.National Institute on Aging, NIH, grant # R01 AG009191, awarded to the first autho

    Short-term adaptation to accented English by younger and older adults

    No full text
    This study examined the effects of age and hearing loss on short-term adaptation to accented speech. Data from younger and older listeners in a prior investigation [Gordon-Salant et al. (2010). J. Acoust. Soc. Am. 128, 444–455] were re-analyzed to examine changes in recognition over four administrations of equivalent lists of English stimuli recorded by native speakers of Spanish and English. Results showed improvement in recognition scores over four list administrations for the accented stimuli but not for the native English stimuli. Group effects emerged but were not involved in any interactions, suggesting that short-term adaptation to accented speech is preserved with aging and with hearing loss
    corecore