15 research outputs found

    Biomechanical comparison of menisci from different species and artificial constructs

    Get PDF
    Background: Loss of meniscal tissue is correlated with early osteoarthritis but few data exist regarding detailed biomechanical properties (e. g. viscoelastic behavior) of menisci in different species commonly used as animal models. The purpose of the current study was to biomechanically characterize bovine, ovine, and porcine menisci (each n = 6, midpart of the medial meniscus) and compare their properties to that of normal and degenerated human menisci (n = 6) and two commercially available artificial scaffolds (each n = 3). Methods: Samples were tested in a cyclic, minimally constraint compression-relaxation test with a universal testing machine allowing the characterization of the viscoelastic properties including stiffness, residual force and relative sample compression. T-tests were used to compare the biomechanical parameters of all samples. Significance level was set at p < 0.05. Results: Throughout cyclic testing stiffness, residual force and relative sample compression increased significantly (p < 0.05) in all tested meniscus samples. From the tested animal meniscus samples the ovine menisci showed the highest biomechanical similarity to human menisci in terms of stiffness (human: 8.54 N/mm +/- 1.87, cycle 1; ovine: 11.24 N/mm +/- 2.36, cycle 1, p = 0.0528), residual force (human: 2.99 N +/- 0.63, cycle 1 vs. ovine 3.24 N +/- 0.13, cycle 1, p = 0.364) and relative sample compression (human 19.92\% +/- 0.63, cycle 1 vs. 18.72\% +/- 1.84 in ovine samples at cycle 1, p = 0.162). The artificial constructs - as hypothesized- revealed statistically significant inferior biomechanical properties. Conclusions: For future research the use of ovine meniscus would be desirable showing the highest biomechanical similarities to human meniscus tissue. The significantly different biomechanical properties of the artificial scaffolds highlight the necessity of cellular ingrowth and formation of extracellular matrix to gain viscoelastic properties. As a consequence, a period of unloading (at least partial weight bearing) is necessary, until the remodeling process in the scaffold is sufficient to withstand forces during weight bearing

    Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model

    Get PDF
    Background: Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. Methods: G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n = 15;control, placebo, 1 and 10 mu g G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n = 9;H&E by modified MOVIN score/Collagen I/III) and biomechanically (n = 6). Results: In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 mu g/d but not for G-CSF 10 mu g/d in Collagen III content (p = 0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 mu g/d revealed a significant higher load to failure ratio (p = 0.020) compared to control but no significant differences in stiffness. Conclusions: By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties (highly adhesive, injectable, biocompatible) VPGs are a very interesting option for biologic augmentation. The study may serve as basis for further research in growth factor application models

    Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model

    Get PDF
    Background: Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. Methods: G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n = 15;control, placebo, 1 and 10 mu g G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n = 9;H&E by modified MOVIN score/Collagen I/III) and biomechanically (n = 6). Results: In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 mu g/d but not for G-CSF 10 mu g/d in Collagen III content (p = 0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 mu g/d revealed a significant higher load to failure ratio (p = 0.020) compared to control but no significant differences in stiffness. Conclusions: By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties (highly adhesive, injectable, biocompatible) VPGs are a very interesting option for biologic augmentation. The study may serve as basis for further research in growth factor application models

    The influence of radio frequency ablation on intra-articular fluid temperature in the ankle joint - a cadaver study

    No full text
    Abstract Background Radio frequency ablation devices have found a widespread application in arthroscopic surgery. However, recent publications report about elevated temperatures, which may cause damage to the capsular tissue and especially to chondrocytes. The purpose of this study was the investigation of the maximum temperatures that occur in the ankle joint with the use of a commercially available radio frequency ablation device. Methods Six formalin-fixed cadaver ankle specimens were used for this study. The radio frequency device was applied for 120 s to remove tissue. Intra-articular temperatures were logged every second for 120 s at a distance of 3, 5 and 10 mm from the tip of the radio frequency device. The irrigation fluid flow was controlled by setting the inflow pressure to 10 mmHg, 25 mmHg, 50 mmHg and 100 mmHg, respectively. The controller unit voltage setting was set to 1, 5 and 9. Results Maximum temperatures exceeding 50 °C/122 °F were observed for all combinations of parameters, except for those with a pressure of 100 mmHg pressure. The main critical variable is the pressure setting, which is highly significant. The controller unit voltage setting showed no effect on the temperature measurements. The highest temperature was 102.7 °C/215.6 °F measured for an irrigation flow of 10 mmHg. The shortest time span to exceed 50 °C/122 °F was 3 s. Conclusion In order to avoid temperatures exceeding 50 °C/122 °F in the use of radio frequency devices in arthroscopic surgeries of the ankle joint, it is recommended to use a high irrigation flow by setting the pressure difference across the ankle joint as high as feasible. Even short intervals of a low irrigation flow may lead to critical temperatures above 50 °C/122 °F. Level of Evidence Level II, diagnostic study

    Return to sports after plate fixation of humeral head fractures 65 cases with minimum 24-month follow-up

    No full text
    Abstract Background Humeral head fractures requiring surgical intervention are severe injuries, which might affect the return to sports and daily activities. We hypothesize that athletic patients will be constrained regarding their sporting activities after surgically treated humeral head fractures. Despite a long rehabilitation program physical activities will change and an avoidance of overhead activities will be noticed. Methods Case series with 65 Patients, with a minimum follow-up of 24 months participated in this study. All patients were treated using a locking plate fixation. Their sporting activity was investigated at the time of the injury and re-investigated after an average of 3.83 years. The questionnaire setup included the evaluation of shoulder function, sporting activities, intensity, sport level and frequency evaluation. Level of evidence IV. Results At the time of injury 61 Patients (94%) were engaged in recreational sporting activities. The number of sporting activities declined from 26 to 23 at the follow-up examination. There was also a decline in sports frequency and duration of sports activities. Conclusion The majority of patients remains active in their recreational sporting activity at a comparable duration and frequency both pre- and postoperatively. Nevertheless, shoulder centered sport activities including golf, water skiing and martial arts declined or were given up

    Reconstruction of displaced acromio-clavicular joint dislocations using a triple suture-cerclage: description of a safe and efficient surgical technique

    No full text
    Abstract Purpose In this retrospective study we investigated the clinical and radiological outcome after operative treatment of acute Rockwood III-V injuries of the AC-joint using two acromioclavicular (AC) cerclages and one coracoclavicular (CC) cerclage with resorbable sutures. Methods Between 2007 and 2009 a total of 39 patients fit the inclusion criteria after operative treatment of acute AC joint dislocation. All patients underwent open reduction and anatomic reconstruction of the AC and CC-ligaments using PDS® sutures (Polydioxane, Ethicon, Norderstedt, Germany). Thirty-three patients could be investigated at a mean follow up of 32±9 months (range 24–56 months). Results The mean Constant score was 94.3±7.1 (range 73–100) with an age and gender correlated score of 104.2%±6.9 (88-123%). The DASH score (mean 3.46±6.6 points), the ASES score (94.6±9.7points) and the Visual Analogue Scale (mean 0.5±0,6) revealed a good to excellent clinical outcome. The difference in the coracoclavicular distance compared to the contralateral side was Conclusion Open AC joint reconstruction using AC and CC PDS cerclages provides good to excellent clinical results in the majority of cases. However, radiographically, the CC distance increased significantly at final follow up, but neither the amount of re-dislocation nor calcifications of the CC ligaments or osteoarthritis of the AC joint had significant influence on the outcome. Level of evidence Case series, Level IV</p
    corecore