63 research outputs found

    Factors Impeding the Social and Academic Progress of African American Males in Foster Care

    Get PDF
    The purpose of this qualitative study was to identify and analyze factors that impede the social and academic achievement of African American males in foster care. The aim was to gain a clearer understanding of the challenges these male African American students face and identify the barriers preventing them from achieving a comparable level of social and academic success as their counterparts from traditional homes. The research also sought to identify potential remedies for these challenges. Critical Race Theory was used as the theoretical framework for the study. Findings showed that African American males in foster care face a number of challenges to their success, including racism, low expectations, and a lack of social/family support. The findings also revealed several interventions, such as mentoring, extracurricular activities, and increased interaction with biological family members that can promote resiliency in these African American males and assist them in addressing barriers to success

    The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z ∼ 8

    Get PDF
    We analyse the chemical properties of three z∼ 8 galaxies behind the galaxy cluster SMACS J0723.3-7327, observed as part of the Early Release Observations programme of the James Webb Space Telescope. Exploiting [O III]λ4363 auroral line detections in NIRSpec spectra, we robustly apply the direct Te method for the very first time at such high redshift, measuring metallicities ranging from extremely metal poor (12 + log(O/H)≈ 7) to about one-third solar. We also discuss the excitation properties of these sources, and compare them with local strong-line metallicity calibrations. We find that none of the considered diagnostics match simultaneously the observed relations between metallicity and strong-line ratios for the three sources, implying that a proper re-assessment of the calibrations may be needed at these redshifts. On the mass-metallicity plane, the two galaxies at z ∼ 7.6 (log(M∗/M☉) = 8.1, 8.7) have metallicities that are consistent with the extrapolation of the mass-metallicity relation at z∼2-3, while the least massive galaxy at z ∼ 8.5 (log(M∗/M☉) = 7.8) shows instead a significantly lower metallicity. The three galaxies show different level of offset relative to the Fundamental Metallicity Relation, with two of them (at z∼ 7.6) being marginally consistent, while the z∼ 8.5 source deviating significantly, being probably far from the smooth equilibrium between gas flows, star formation, and metal enrichment in place at later epochs

    JWST NIRCam + NIRSpec: Interstellar medium and stellar populations of young galaxies with rising star formation and evolving gas reservoirs

    Get PDF
    We present an interstellar medium and stellar population analysis of three spectroscopically confirmed z > 7 galaxies in the Early Release Observations JWST/NIRCam and JWST/NIRSpec data of the SMACS J0723.3-7327 cluster. We use the Bayesian spectral energy distribution-fitting code PROSPECTOR with a flexible star formation history (SFH), a variable dust attenuation law, and a self-consistent model of nebular emission (continuum and emission lines). Importantly, we self-consistently fit both the emission line fluxes from JWST/NIRSpec and the broad-band photometry from JWST/NIRCam, taking into account slit-loss effects. We find that these three z=7.6-8.5 galaxies (M-* approximate to 10(8) M-circle dot) are young with rising SFHs and mass-weighted ages of 3-4 Myr, though we find indications for underlying older stellar populations. The inferred gas-phase metallicities broadly agree with the direct metallicity estimates from the auroral lines. The galaxy with the lowest gas-phase metallicity (Z(gas) = 0.06 Z(circle dot)) has a steeply rising SFH, is very compact ( <0.2 kpc), and has a high star formation rate surface density (Sigma(SFR) approximate to 22 M-circle dot yr(-1) kpc(-2)), consistent with rapid gas accretion. The two other objects with higher gas-phase metallicities show more complex multicomponent morphologies on kpc scales, indicating that their recent increase in star formation rate is driven by mergers or internal, gravitational instabilities. We discuss effects of assuming different SFH priors or only fitting the photometric data. Our analysis highlights the strength and importance of combining JWST imaging and spectroscopy for fully assessing the nature of galaxies at the earliest epochs

    Discovery and properties of the earliest galaxies with confirmed distances

    Get PDF
    © 2023 Springer Nature Limited. This is the accepted manuscript version of an article which has been published in final form at 10.1038/s41550-023-01921-1Surveys with James Webb Space Telescope (JWST) have discovered candidate galaxies in the first 400 Myr of cosmic time. The properties of these distant galaxies provide initial conditions for understanding early galaxy formation and cosmic reionisation. Preliminary indications have suggested these candidate galaxies may be more massive and abundant than previously thought. However, without spectroscopic confirmation of their distances to constrain their intrinsic brightnesses, their inferred properties remain uncertain. Here we report on four galaxies located in the JWST Advanced Deep Extragalactic Survey (JADES) Near-Infrared Camera (NIRCam) imaging with photometric redshifts z∼10−13z\sim10-13 subsequently confirmed by JADES JWST Near- Infrared Spectrograph (NIRSpec) observations. These galaxies include the first redshift z>12z>12 systems both discovered and spectroscopically confirmed by JWST. Using stellar population modelling, we find the galaxies typically contain a hundred million solar masses in stars, in stellar populations that are less than one hundred million years old. The moderate star formation rates and compact sizes suggest elevated star formation rate surface densities, a key indicator of their formation pathways. Taken together, these measurements show that the first galaxies contributing to cosmic reionisation formed rapidly and with intense internal radiation fields.Peer reviewe

    The ionizing photon production efficiency at z ∼6 for Lyman-Alpha emitters using JEMS and MUSE

    Get PDF
    We study the ionizing photon production efficiency at the end of the Epoch of Reionization (z ∼5.4-6.6) for a sample of 30 Ly α emitters. This is a crucial quantity to infer the ionizing photon budget of the universe. These objects were selected to have reliable spectroscopic redshifts, assigned based on the profile of their Ly α emission line, detected in the MUSE deep fields. We exploit medium-band observations from the JWST Extragalactic Medium-band Survey (JEMS) to find the flux excess corresponding to the redshifted Hα emission line. We estimate the ultraviolet (UV) luminosity by fitting the full JEMS photometry, along with several HST photometric points, with Prospector. We find a median UV continuum slope of, indicating young stellar populations with little-To-no dust attenuation. Supported by this, we derive ζion,0 with no dust attenuation and find a median value of log. If we perform dust attenuation corrections and assume a Calzetti attenuation law, our values are lowered by ∼0.1 dex. Our results suggest Ly α emitters at the Epoch of Reionization have slightly enhanced ζion,0 compared to previous estimations from literature, in particular, when compared to the non-Ly α emitting population. This initial study provides a promising outlook on the characterization of ionizing photon production in the early universe. In the future, a more extensive study will be performed on the entire data set provided by the JWST Advanced Deep Extragalactic Survey (JADES). Thus, for the first time, allowing us to place constraints on the wider galaxy populations driving reionization

    JEMS: A Deep Medium-band Imaging Survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS

    Get PDF
    We present JWST Extragalactic Medium-band Survey, the first public medium-band imaging survey carried out using JWST/NIRCam and NIRISS. These observations use ∼2 and ∼4 μm medium-band filters (NIRCam F182M, F210M, F430M, F460M, F480M; and NIRISS F430M and F480M in parallel) over 15.6 arcmin2 in the Hubble Ultra Deep Field (UDF), thereby building on the deepest multiwavelength public data sets available anywhere on the sky. We describe our science goals, survey design, NIRCam and NIRISS image reduction methods, and describe our first data release of the science-ready mosaics, which reach 5σ point-source limits (AB mag) of ∼29.3-29.4 in 2 μm filters and ∼28.2-28.7 at 4 μm. Our chosen filters create a JWST imaging survey in the UDF that enables novel analysis of a range of spectral features potentially across the redshift range of 0.3 1 mag) across redshifts 1.5 < z < 9.3, most prominently Hα+[N ii] and [O iii]+Hβ. We present our first data release including science-ready mosaics of each medium-band image available to the community, adding to the legacy value of past and future surveys in the UDF. This survey demonstrates the power of medium-band imaging with JWST, informing future extragalactic survey strategies using JWST observations

    JADES: Detecting [OIII] λ 4363 emitters and testing strong line calibrations in the high- z Universe with ultra-deep JWST/NIRSpec spectroscopy up to z ~ 9.5

    Get PDF
    We present ten novel [OIII]λ4363 auroral line detections up to z~ 9.5 measured from ultra-deep JWST/NIRSpec MSA spectroscopy from the JWST Advanced Deep Extragalactic Survey (JADES). We leverage the deepest spectroscopic observations taken thus far with NIRSpec to determine electron temperatures and oxygen abundances using the direct Te method. We directly compare these results against a suite of locally calibrated strong-line diagnostics and recent high-z calibrations. We find the calibrations fail to simultaneously match our JADES sample, thus warranting a self-consistent revision of these calibrations for the high-z Universe. We find a weak dependence between R2 and O3O2 with metallicity, thus suggesting these line ratios are inefficient in the high-z Universe as metallicity diagnostics and degeneracy breakers. We find R3 and R23 are still correlated with metallicity, but we find a tentative flattening of these diagnostics, thus suggesting future difficulties when applying these strong line ratios as metallicity indicators in the high-z Universe. We also propose and test an alternative diagnostic based on a different combination of R3 and R2 with a higher dynamic range. We find a reasonably good agreement (median offset of 0.002 dex, median absolute offset of 0.13 dex) with the JWST sample at low metallicity, but future investigations are required on larger samples to probe past the turnover point. At a given metallicity, our sample demonstrates higher ionization and excitation ratios than local galaxies with rest-frame EWs(Hβ) ≈ 200-300 Å. However, we find the median rest-frame EWs(Hβ) of our sample to be~2× less than the galaxies used for the local calibrations. This EW discrepancy combined with the high ionization of our galaxies does not offer a clear description of [OIII]λ4363 production in the high-z Universe, thus warranting a much deeper examination into the factors influencing these processes

    Inside the bubble: exploring the environments of reionisation-era Lyman- α emitting galaxies with JADES and FRESCO*

    Get PDF
    We present a study of the environments of 17 Lyman-α emitting galaxies (LAEs) in the reionisation-era (5.8 5%) observed in our sample of LAEs, suggesting the presence of ionised hydrogen along the line of sight towards at least eight out of 17 LAEs. We find minimum physical 'bubble'sizes of the order of Rion ∼ 0.1- 1pMpc are required in a patchy reionisation scenario where ionised bubbles containing the LAEs are embedded in a fully neutral IGM. Around half of the LAEs in our sample are found to coincide with large-scale galaxy overdensities seen in FRESCO at z ∼ 5.8- 5.9 and z ∼ 7.3, suggesting Lyman-α transmission is strongly enhanced in such overdense regions, and underlining the importance of LAEs as tracers of the first large-scale ionised bubbles. Considering only spectroscopically confirmed galaxies, we find our sample of UV-faint LAEs (MUV ≳ -20mag) and their direct neighbours are generally not able to produce the required ionised regions based on the Lyman-α transmission properties, suggesting lower-luminosity sources likely play an important role in carving out these bubbles. These observations demonstrate the combined power of JWST multi-object and slitless spectroscopy in acquiring a unique view of the early Universe during cosmic reionisation via the most distant LAEs

    JADES Imaging of GN-z11: Revealing the Morphology and Environment of a Luminous Galaxy 430 Myr after the Big Bang

    Get PDF
    We present JWST NIRCam nine-band near-infrared imaging of the luminous z = 10.6 galaxy GN-z11 from the JWST Advanced Deep Extragalactic Survey of the GOODS-N field. We find a spectral energy distribution (SED) entirely consistent with the expected form of a high-redshift galaxy: a clear blue continuum from 1.5 to 4 μm with a complete dropout in F115W. The core of GN-z11 is extremely compact in JWST imaging. We analyze the image with a two-component model, using a point source and a Sérsic profile that fits to a half-light radius of 200 pc and an index n = 0.9. We find a low-surface-brightness haze about 0.″4 to the northeast of the galaxy, which is most likely a foreground object but might be a more extended component of GN-z11. At a spectroscopic redshift of 10.60 (Bunker et al. 2023), the comparison of the NIRCam F410M and F444W images spans the Balmer jump. From population-synthesis modeling, here assuming no light from an active galactic nucleus, we reproduce the SED of GN-z11, finding a stellar mass of ∼109 M ⊙, a star formation rate of ∼20 M ⊙ yr−1, and a young stellar age of ∼20 Myr. Since massive galaxies at high redshift are likely to be highly clustered, we search for faint neighbors of GN-z11, finding nine galaxies out to ∼5 comoving Mpc transverse with photometric redshifts consistent with z = 10.6, and a tenth more tentative dropout only 3″ away. This is consistent with GN-z11 being hosted by a massive dark-matter halo (≈8 × 1010 M ⊙), though lower halo masses cannot be ruled out
    • …
    corecore