94 research outputs found

    Metal on metal hip resurfacing versus uncemented custom total hip replacement - early results

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There is no current consensus on the most appropriate prosthesis for treating symptomatic osteoarthritis (OA) of the hip in young, active patients. Modern metal on metal hip resurfacing arthroplasty (HR) has gained popularity as it is theoretically more stable, bone conserving and easier to revise than total hip arthroplasty. Early results of metal on metal resurfacing have been encouraging. We have compared two well matched cohorts of patients with regard to function, pain relief and patient satisfaction.</p> <p>Methods</p> <p>This prospective study compares 2 cohorts of young, active patients treated with hip resurfacing (137 patients, 141 hips) and custom uncemented (CADCAM) stems (134 patients, 141 hips). All procedures were performed by a single surgeon. Outcome measures included Oxford, WOMAC and Harris hip scores as well as an activity score. Statistical analysis was performed using the unpaired student's t-test.</p> <p>Results</p> <p>One hundred and thirty four and 137 patients were included in the hip replacement and resurfacing groups respectively. The mean age of these patients was 54.6 years. The mean duration of follow up for the hip resurfacing group was 19.2 months compared to 13.4 months for the total hip replacement group.</p> <p>Pre operative oxford, Harris and WOMAC scores in the THA group were 41.1, 46.4 and 50.9 respectively while the post operative scores were 14.8, 95.8 and 5.0. In the HR group, pre- operative scores were 37.0, 54.1 and 45.9 respectively compared to 15.0, 96.8 and 6.1 post operatively. The degree of improvement was similar in both groups.</p> <p>Conclusion</p> <p>There was no significant clinical difference between the patients treated with hip resurfacing and total hip arthroplasty in the short term.</p

    Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    Get PDF
    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence

    Semiconductors in Non-Equilibrium Conditions

    No full text
    • …
    corecore