2 research outputs found

    Numerical analysis of the influence of maximum residual thermal stresses on the intensity factor between the matrix and particle interfaces in metal matrix composite

    Get PDF
    A critical problem in the application of metal matrix composites is the presence of high residual thermal stresses induced during the development process. These thermally induced stresses are generally detrimental to the service life of this type of composite. This article discusses the influence of maximum residual stresses on the intensity factor. The results interpreted in terms of damage, allowed us to identify the risk zones; characterized by a significant level of maximum residual stresses (S11Max, S22Max, S33Max), namely the particle/Matrix interface. The results also show that the loading conditions and the inter-distance between matrix and particle with two interfacial cracks have an important effect on max residual stresses and stress intensity factors. &nbsp

    Performance Investigation of the Solar Membrane Distillation Process Using TRNSYS Software

    Get PDF
    Membrane distillation (MD) is a separation process used for water desalination, which operates at low pressures and feeds temperatures. Air gap membrane distillation (AGMD) is the new MD configuration for desalination where both the hot feed side and the cold permeate side are in indirect contact with the two membrane surfaces. The chapter presents a new approach for the numerical study to investigate various solar thermal systems of the MD process. The various MD solar systems are studied numerically using and including both flat plate collectors (the useful thermal energy reaches 3750 kJ/hr with a total area of 4 m2) and photovoltaic panels, each one has an area of 1.6 m2 by using an energy storage battery (12 V, 200 Ah). Therefore, the power load of solar AGMD systems is calculated and compared for the production of 100 L/day of distillate water. It was found that the developed system consumes less energy (1.2 kW) than other systems by percentage reaches 52.64% and with an average distillate water flow reaches 10 kg/h at the feed inlet temperature of AGMD module 52°C. Then, the developed system has been studied using TRNSYS and PVGIS programs on different days during the year in Ain Temouchent weather, Algeria
    corecore