426 research outputs found
Complexity of Determining Nonemptiness of the Core
Coalition formation is a key problem in automated negotiation among
self-interested agents, and other multiagent applications. A coalition of
agents can sometimes accomplish things that the individual agents cannot, or
can do things more efficiently. However, motivating the agents to abide to a
solution requires careful analysis: only some of the solutions are stable in
the sense that no group of agents is motivated to break off and form a new
coalition. This constraint has been studied extensively in cooperative game
theory. However, the computational questions around this constraint have
received less attention. When it comes to coalition formation among software
agents (that represent real-world parties), these questions become increasingly
explicit.
In this paper we define a concise general representation for games in
characteristic form that relies on superadditivity, and show that it allows for
efficient checking of whether a given outcome is in the core. We then show that
determining whether the core is nonempty is -complete both with
and without transferable utility. We demonstrate that what makes the problem
hard in both cases is determining the collaborative possibilities (the set of
outcomes possible for the grand coalition), by showing that if these are given,
the problem becomes tractable in both cases. However, we then demonstrate that
for a hybrid version of the problem, where utility transfer is possible only
within the grand coalition, the problem remains -complete even
when the collaborative possibilities are given
Definition and Complexity of Some Basic Metareasoning Problems
In most real-world settings, due to limited time or other resources, an agent
cannot perform all potentially useful deliberation and information gathering
actions. This leads to the metareasoning problem of selecting such actions.
Decision-theoretic methods for metareasoning have been studied in AI, but there
are few theoretical results on the complexity of metareasoning.
We derive hardness results for three settings which most real metareasoning
systems would have to encompass as special cases. In the first, the agent has
to decide how to allocate its deliberation time across anytime algorithms
running on different problem instances. We show this to be
-complete. In the second, the agent has to (dynamically) allocate
its deliberation or information gathering resources across multiple actions
that it has to choose among. We show this to be -hard even when
evaluating each individual action is extremely simple. In the third, the agent
has to (dynamically) choose a limited number of deliberation or information
gathering actions to disambiguate the state of the world. We show that this is
-hard under a natural restriction, and -hard in
general
AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents
A satisfactory multiagent learning algorithm should, {\em at a minimum},
learn to play optimally against stationary opponents and converge to a Nash
equilibrium in self-play. The algorithm that has come closest, WoLF-IGA, has
been proven to have these two properties in 2-player 2-action repeated
games--assuming that the opponent's (mixed) strategy is observable. In this
paper we present AWESOME, the first algorithm that is guaranteed to have these
two properties in {\em all} repeated (finite) games. It requires only that the
other players' actual actions (not their strategies) can be observed at each
step. It also learns to play optimally against opponents that {\em eventually
become} stationary. The basic idea behind AWESOME ({\em Adapt When Everybody is
Stationary, Otherwise Move to Equilibrium}) is to try to adapt to the others'
strategies when they appear stationary, but otherwise to retreat to a
precomputed equilibrium strategy. The techniques used to prove the properties
of AWESOME are fundamentally different from those used for previous algorithms,
and may help in analyzing other multiagent learning algorithms also
Imperfect-Recall Abstractions with Bounds in Games
Imperfect-recall abstraction has emerged as the leading paradigm for
practical large-scale equilibrium computation in incomplete-information games.
However, imperfect-recall abstractions are poorly understood, and only weak
algorithm-specific guarantees on solution quality are known. In this paper, we
show the first general, algorithm-agnostic, solution quality guarantees for
Nash equilibria and approximate self-trembling equilibria computed in
imperfect-recall abstractions, when implemented in the original
(perfect-recall) game. Our results are for a class of games that generalizes
the only previously known class of imperfect-recall abstractions where any
results had been obtained. Further, our analysis is tighter in two ways, each
of which can lead to an exponential reduction in the solution quality error
bound.
We then show that for extensive-form games that satisfy certain properties,
the problem of computing a bound-minimizing abstraction for a single level of
the game reduces to a clustering problem, where the increase in our bound is
the distance function. This reduction leads to the first imperfect-recall
abstraction algorithm with solution quality bounds. We proceed to show a divide
in the class of abstraction problems. If payoffs are at the same scale at all
information sets considered for abstraction, the input forms a metric space.
Conversely, if this condition is not satisfied, we show that the input does not
form a metric space. Finally, we use these results to experimentally
investigate the quality of our bound for single-level abstraction
BL-WoLF: A Framework For Loss-Bounded Learnability In Zero-Sum Games
We present BL-WoLF, a framework for learnability in repeated zero-sum games
where the cost of learning is measured by the losses the learning agent accrues
(rather than the number of rounds). The game is adversarially chosen from some
family that the learner knows. The opponent knows the game and the learner's
learning strategy. The learner tries to either not accrue losses, or to quickly
learn about the game so as to avoid future losses (this is consistent with the
Win or Learn Fast (WoLF) principle; BL stands for ``bounded loss''). Our
framework allows for both probabilistic and approximate learning. The resultant
notion of {\em BL-WoLF}-learnability can be applied to any class of games, and
allows us to measure the inherent disadvantage to a player that does not know
which game in the class it is in. We present {\em guaranteed
BL-WoLF-learnability} results for families of games with deterministic payoffs
and families of games with stochastic payoffs. We demonstrate that these
families are {\em guaranteed approximately BL-WoLF-learnable} with lower cost.
We then demonstrate families of games (both stochastic and deterministic) that
are not guaranteed BL-WoLF-learnable. We show that those families,
nevertheless, are {\em BL-WoLF-learnable}. To prove these results, we use a key
lemma which we derive
- …