28,220 research outputs found

    Fine structure of distributions and central limit theorem in diffusive billiards

    Full text link
    We investigate deterministic diffusion in periodic billiard models, in terms of the convergence of rescaled distributions to the limiting normal distribution required by the central limit theorem; this is stronger than the usual requirement that the mean square displacement grow asymptotically linearly in time. The main model studied is a chaotic Lorentz gas where the central limit theorem has been rigorously proved. We study one-dimensional position and displacement densities describing the time evolution of statistical ensembles in a channel geometry, using a more refined method than histograms. We find a pronounced oscillatory fine structure, and show that this has its origin in the geometry of the billiard domain. This fine structure prevents the rescaled densities from converging pointwise to gaussian densities; however, demodulating them by the fine structure gives new densities which seem to converge uniformly. We give an analytical estimate of the rate of convergence of the original distributions to the limiting normal distribution, based on the analysis of the fine structure, which agrees well with simulation results. We show that using a Maxwellian (gaussian) distribution of velocities in place of unit speed velocities does not affect the growth of the mean square displacement, but changes the limiting shape of the distributions to a non-gaussian one. Using the same methods, we give numerical evidence that a non-chaotic polygonal channel model also obeys the central limit theorem, but with a slower convergence rate.Comment: 16 pages, 19 figures. Accepted for publication in Physical Review E. Some higher quality figures at http://www.maths.warwick.ac.uk/~dsander

    Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves

    Get PDF
    Large-amplitude drift wave fluctuations are observed to cause severe ion temperature oscillations in plasmas of the Caltech Encore tokamak [J. M. McChesney, P. M. Bellan, and R. A. Stern, Phys. Fluids B 3, 3370 (1991)]. Experimental investigations of the complete ion dynamical behavior in these waves are presented. The wave electric field excites stochastic ion orbits in the plane normal (perpendicular to) to B, resulting in rapid perpendicular to heating. Ion-ion collisions impart energy along (parallel to) B, relaxing the perpendicular to-parallel to temperature anisotropy. Hot ions with large orbit radii escape confinement, reaching the chamber wall and cooling the distribution. Cold ions from the plasma edge convect back into the plasma (i.e., recycle), causing further cooling and significantly replenishing the density depleted by orbit losses. The ion-ion collision period tau(ii)similar to Tau(3/2)/n fluctuates strongly with the drift wave phase, due to intense (approximate to 50%) fluctuations in n and Tau. Evidence for particle recycling is given by observations of bimodal ion velocity distributions near the plasma edge, indicating the presence of cold ions (0.4 eV) superposed atop the hot (4-8 eV) plasma background. These appear periodically, synchronous with the drift wave phase at which ion fluid flow from the wall toward the plasma center peaks. Evidence is presented that such a periodic heat/loss/recycle/cool process is expected in plasmas with strong stochastic heating

    Real-time phase-selective data acquisition system for measurement of wave phenomena in pulsed plasma discharges

    Get PDF
    A novel data acquisition system and methodology have been developed for the study of wave phenomena in pulsed plasma discharges. The method effectively reduces experimental uncertainty due to shot-to-shot fluctuations in high repetition rate experiments. Real-time analysis of each wave form allows classification of discharges by wave amplitude, phase, or other features. Measurements can then be constructed from subsets of discharges having similar wave properties. The method clarifies the trade-offs between experimental uncertainty reduction and increased demand for data storage capacity and acquisition time. Finally, this data acquisition system is simple to implement and requires relatively little equipment: only a wave form digitizer and a moderately fast computer

    Coherent control of microwave pulse storage in superconducting circuits

    Full text link
    Coherent pulse control for quantum memory is viable in the optical domain but nascent in microwave quantum circuits. We show how to realize coherent storage and on-demand pulse retrieval entirely within a superconducting circuit by exploiting and extending existing electromagnetically induced transparency technology in superconducting quantum circuits. Our scheme employs a linear array of superconducting artificial atoms coupled to a microwave transmission line.Comment: 13 pages, 4 figures and some supplementary materia

    Symbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations

    Get PDF
    Algorithms for the symbolic computation of polynomial conserved densities, fluxes, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations are presented. In the algorithms we use discrete versions of the Fréchet and variational derivatives, as well as discrete Euler and homotopy operators. The algorithms are illustrated for prototypical nonlinear polynomial lattices, including the Kac-van Moerbeke (Volterra) and Toda lattices. Results are shown for the modified Volterra and Ablowitz-Ladik lattices

    High-Quality Shared-Memory Graph Partitioning

    Full text link
    Partitioning graphs into blocks of roughly equal size such that few edges run between blocks is a frequently needed operation in processing graphs. Recently, size, variety, and structural complexity of these networks has grown dramatically. Unfortunately, previous approaches to parallel graph partitioning have problems in this context since they often show a negative trade-off between speed and quality. We present an approach to multi-level shared-memory parallel graph partitioning that guarantees balanced solutions, shows high speed-ups for a variety of large graphs and yields very good quality independently of the number of cores used. For example, on 31 cores, our algorithm partitions our largest test instance into 16 blocks cutting less than half the number of edges than our main competitor when both algorithms are given the same amount of time. Important ingredients include parallel label propagation for both coarsening and improvement, parallel initial partitioning, a simple yet effective approach to parallel localized local search, and fast locality preserving hash tables

    Chaos in cylindrical stadium billiards via a generic nonlinear mechanism

    Full text link
    We describe conditions under which higher-dimensional billiard models in bounded, convex regions are fully chaotic, generalizing the Bunimovich stadium to dimensions above two. An example is a three-dimensional stadium bounded by a cylinder and several planes; the combination of these elements may give rise to defocusing, allowing large chaotic regions in phase space. By studying families of marginally-stable periodic orbits that populate the residual part of phase space, we identify conditions under which a nonlinear instability mechanism arises in their vicinity. For particular geometries, this mechanism rather induces stable nonlinear oscillations, including in the form of whispering-gallery modes.Comment: 4 pages, 4 figure
    • …
    corecore