2 research outputs found

    A dynamic metabolite valve for the control of central carbon metabolism

    Full text link
    Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose a metabolite valve to mitigate these issues by dynamically tuning endogenous processes to balance the demands of cell health and pathway efficiency. A control node of glucose utilization, glucokinase (Glk), was exogenously manipulated through either engineered antisense RNA or an inverting gene circuit. Using these techniques, we were able to directly control glycolytic flux, reducing the specific growth rate of engineered Escherichia coli by up to 50% without altering final biomass accumulation. This modulation was accompanied by successful redirection of glucose into a model pathway leading to an increase in the pathway yield and reduced carbon waste to acetate. This work represents one of the first examples of the dynamic redirection of glucose away from central carbon metabolism and enables the creation of novel, efficient intracellular pathways with glucose used directly as a substrate. © 2012 Elsevier Inc

    Tuning Primary Metabolism for Heterologous Pathway Productivity

    Full text link
    Tuning expression of competing endogenous pathways has been identified as an effective strategy in the optimization of heterologous production pathways. However, intervention at the first step of glycolysis, where no alternate routes of carbon utilization exist, remains unexplored. In this work we have engineered a viable E. coli host that decouples glucose transport and phosphorylation, enabling independent control of glucose flux to a heterologous pathway of interest through glucokinase (glk) expression. Using community sourced and curated promoters, glk expression was varied over a 3-fold range while maintaining cellular viability. The effects of glk expression on the productivity of a model glucose-consuming pathway were also studied. Through control of glycolytic flux we were able to explore a number of cellular phenotypes and vary the yield of our model pathway by up to 2-fold in a controllable manner
    corecore