70 research outputs found
Power domination on triangular grids
The concept of power domination emerged from the problem of monitoring
electrical systems. Given a graph G and a set S V (G), a set M of
monitored vertices is built as follows: at first, M contains only the vertices
of S and their direct neighbors, and then each time a vertex in M has exactly
one neighbor not in M, this neighbor is added to M. The power domination number
of a graph G is the minimum size of a set S such that this process ends up with
the set M containing every vertex of G. We here show that the power domination
number of a triangular grid T\_k with hexagonal-shape border of length k -- 1
is exactly $\lceil k/3 \rceil.Comment: Canadian Conference on Computational Geometry, Jul 2017, Ottawa,
Canad
- …