18 research outputs found

    A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation

    Get PDF
    Over the years, the mitochondrial fatty acid β-oxidation (FAO) pathway has been characterised at the biochemical level as well as the molecular biological level. FAO plays a pivotal role in energy homoeostasis, but it competes with glucose as the primary oxidative substrate. The mechanisms behind this so-called glucose–fatty acid cycle operate at the hormonal, transcriptional and biochemical levels. Inherited defects for most of the FAO enzymes have been identified and characterised and are currently included in neonatal screening programmes. Symptoms range from hypoketotic hypoglycaemia to skeletal and cardiac myopathies. The pathophysiology of these diseases is still not completely understood, hampering optimal treatment. Studies of patients and mouse models will contribute to our understanding of the pathogenesis and will ultimately lead to better treatment

    Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice

    No full text
    Elevation of long-chain acylcarnitine levels is a hallmark of long-chain mitochondrial beta-oxidation (FAO) disorders, and can be accompanied by secondary carnitine deficiency. To restore free carnitine levels, and to increase myocardial export of long-chain fatty acyl-CoA esters, supplementation of L-carnitine in patients has been proposed. However, carnitine supplementation is controversial, because it may enhance the potentially lipotoxic buildup of long-chain acylcarnitines in the FAO-deficient heart. In this longitudinal study, we investigated the effects of carnitine supplementation in an animal model of long-chain FAO deficiency, the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse. Cardiac size and function, and triglyceride (TG) levels were quantified using proton magnetic resonance imaging (MRI) and spectroscopy (H-1-MRS) in LCAD KO and wild-type (WT) mice. Carnitine was supplemented orally for 4 weeks starting at 5 weeks of age. Non-supplemented animals served as controls. In vivo data were complemented with ex vivo biochemical assays. LCAD KO mice displayed cardiac hypertrophy and elevated levels of myocardial TG compared to WT mice. Carnitine supplementation lowered myocardial TG, normalizing myocardial TG levels in LCAD KO mice. Furthermore, carnitine supplementation did not affect cardiac performance and hypertrophy, or induce an accumulation of potentially toxic long-chain acylcarnitines in the LCAD KO heart. This study lends support to the proposed beneficial effect of carnitine supplementation alleviating toxicity by exporting acylcarnitines out of the FAO-deficient myocardium, rather than to the concern about a potentially detrimental effect of supplementation-induced production of lipotoxic long-chain acylcarnitines

    Identification and characterization of Eci3, a murine kidney-specific Δ3,Δ2-enoyl-CoA isomerase

    No full text
    Oxidation of unsaturated fatty acids requires the action of auxiliary enzymes, such as Δ(3),Δ(2)-enoyl-CoA isomerases. Here we describe a detailed biochemical, molecular, histological, and evolutionary characterization of Eci3, the fourth member of the mammalian enoyl-CoA isomerase family. Eci3 specifically evolved in rodents after gene duplication of Eci2. Eci3 is with 79% identity homologous to Eci2 and contains a peroxisomal targeting signal type 1. Subcellular fractionation of mouse kidney and immunofluorescence studies revealed a specific peroxisomal localization for Eci3. Expression studies showed that mouse Eci3 is almost exclusively expressed in kidney. By using immunohistochemistry, we found that Eci3 is not only expressed in cells of the proximal tubule, but also in a subset of cells in the tubulointerstitium and the glomerulus. In vitro, Eci3 catalyzed the isomerization of trans-3-nonenoyl-CoA to trans-2-nonenoyl-CoA equally efficient as Eci2, suggesting a role in oxidation of unsaturated fatty acids. However, in contrast to Eci2, in silico gene coexpression and enrichment analysis for Eci3 in kidney did not yield carboxylic acid metabolism, but diverse biological functions, such as ion transport (P=7.1E-3) and tissue morphogenesis (P=1.0E-3). Thus, Eci3 picked up a novel and unexpected role in kidney function during rodent evolutio

    Empagliflozin Decreases Lactate Generation in an NHE-1 Dependent Fashion and Increases α-Ketoglutarate Synthesis From Palmitate in Type II Diabetic Mouse Hearts

    No full text
    Aims/hypothesis: Changes in cardiac metabolism and ion homeostasis precede and drive cardiac remodeling and heart failure development. We previously demonstrated that sodium/glucose cotransporter 2 inhibitors (SGLT2i's) have direct cardiac effects on ion homeostasis, possibly through inhibition of the cardiac sodium/hydrogen exchanger (NHE-1). Here, we hypothesize that Empagliflozin (EMPA) also possesses direct and acute cardiac effects on glucose and fatty acid metabolism of isolated type II diabetes mellitus (db/db) mouse hearts. In addition, we explore whether direct effects on glucose metabolism are nullified in the presence of an NHE-1 inhibitor. Methods: Langendorff-perfused type II diabetic db/db mouse hearts were examined in three different series: 1: 13C glucose perfusions (n = 32); 2: 13C palmitate perfusions (n = 13); and 3: 13C glucose + 10 μM Cariporide (specific NHE-1 inhibitor) perfusions (n = 17). Within each series, EMPA treated hearts (1 μM EMPA) were compared with vehicle-perfused hearts (0.02% DMSO). Afterwards, hearts were snap frozen and lysed for stable isotope analysis and metabolomics using LC-MS techniques. Hearts from series 1 were also analyzed for phosphorylation status of AKT, STAT3, AMPK, ERK, and eNOS (n = 8 per group). Results: Cardiac mechanical performance, oxygen consumption and protein phosphorylation were not altered by 35 min EMPA treatment. EMPA was without an overall acute and direct effect on glucose or fatty acid metabolism. However, EMPA did specifically decrease cardiac lactate labeling in the 13C glucose perfusions (13C labeling of lactate: 58 ± 2% vs. 50 ± 3%, for vehicle and EMPA, respectively; P = 0.02), without changes in other glucose metabolic pathways. In contrast, EMPA increased cardiac labeling in α-ketoglutarate derived from 13C palmitate perfusions (13C labeling of α-KG: 79 ± 1% vs. 86 ± 1% for vehicle and EMPA, respectively; P = 0.01). Inhibition of the NHE by Cariporide abolished EMPA effects on lactate labeling from 13C glucose. Conclusions: The present study shows for the first time that the SGLT2 inhibitor Empagliflozin has acute specific metabolic effects in isolated diabetic hearts, i.e., decreased lactate generation from labeled glucose and increased α-ketoglutarate synthesis from labeled palmitate. The decreased lactate generation by EMPA seems to be mediated through NHE-1 inhibition

    Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function

    No full text
    Lipotoxicity may be a key contributor to the pathogenesis of cardiac abnormalities in mitochondrial long-chain fatty acid β-oxidation (FAO) disorders. Few data are available on myocardial lipid levels and cardiac performance in FAO deficiencies. The purpose of this animal study is to assess fasting-induced changes in cardiac morphology, function, and triglyceride (TG) storage as a consequence of FAO deficiency in a noninvasive fashion. MRI and proton magnetic resonance spectroscopy ((1)H-MRS) were applied in vivo in long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mice and wild-type (WT) mice (n=8 per genotype). Fasting was used to increase the heart's dependency on FAO for maintenance of energy homeostasis. In vivo data were complemented with ex vivo measurements of myocardial lipids. Left ventricular (LV) mass was higher in LCAD KO mice compared with WT mice (P <0.05), indicating LV myocardial hypertrophy. Myocardial TG content was higher in LCAD KO mice at baseline (P <0.001) and further increased in fasted LCAD KO mice (P <0.05). Concomitantly, LV ejection fraction (P <0.01) and diastolic filling rate (P <0.01) decreased after fasting, whereas these functional parameters did not change in fasted WT mice. Myocardial ceramide content was higher in fasted LCAD KO mice compared with fasted WT mice (P <0.05). Using a noninvasive approach, this study reveals accumulation of myocardial TG in LCAD KO mice. Toxicity of accumulating lipid metabolites such as ceramides may be responsible for the fasting-induced impairment of cardiac function observed in the LCAD KO mous

    Dietary restriction in the long-chain acyl-CoA dehydrogenase knockout mouse

    Get PDF
    Patients with a disorder of mitochondrial long-chain fatty acid β-oxidation (FAO) have reduced fasting tolerance and may present with hypoketotic hypoglycemia, hepatomegaly, (cardio)myopathy and rhabdomyolysis. Patients should avoid a catabolic state because it increases reliance on FAO as energy source. It is currently unclear whether weight loss through a reduction of caloric intake is safe in patients with a FAO disorder. We used the long-chain acyl-CoA dehydrogenase knockout (LCAD KO) mouse model to study the impact of dietary restriction (DR) on the plasma metabolite profile and cardiac function. For this, LCAD KO and wild type (WT) mice were subjected to DR (70% of ad libitum chow intake) for 4 weeks and compared to ad libitum chow fed mice. We found that DR had a relatively small impact on the plasma metabolite profile of WT and LCAD KO mice. Echocardiography revealed a small decrease in left ventricular systolic function of LCAD KO mice, which was most noticeable after DR, but there was no evidence of DR-induced cardiac remodeling. Our results suggest that weight loss through DR does not have acute and detrimental consequences in a mouse model for FAO disorders

    NLRX1 Deletion Increases Ischemia-Reperfusion Damage and Activates Glucose Metabolism in Mouse Heart

    No full text
    Background: NOD-like receptors (NLR) are intracellular sensors of the innate immune system, with the NLRP3 being a pro-inflammatory member that modulates cardiac ischemia-reperfusion injury (IRI) and metabolism. No information is available on a possible role of anti-inflammatory NLRs on IRI and metabolism in the intact heart. Here we hypothesize that the constitutively expressed, anti-inflammatory mitochondrial NLRX1, affects IRI and metabolism of the isolated mouse heart. Methods: Isolated C57Bl/6J and NLRX1 knock-out (KO) mouse hearts were perfused with a physiological mixture of the essential substrates (lactate, glucose, pyruvate, fatty acid, glutamine) and insulin. For the IRI studies, hearts were subjected to either mild (20 min) or severe (35 min) ischemia and IRI was determined at 60 min reperfusion. Inflammatory mediators (IL-6, TNFα) and survival pathways (mito-HKII, p-Akt, p-AMPK, p-STAT3) were analyzed at 5 min of reperfusion. For the metabolism studies, hearts were perfused for 35 min with either 5.5 mM 13C-glucose or 0.4 mM 13C-palmitate under normoxic conditions, followed by LC-MS analysis and integrated, stepwise, mass-isotopomeric flux analysis (MIMOSA). Results: NLRX1 KO significantly increased IRI (infarct size from 63% to 73%, end-diastolic pressure from 59 mmHg to 75 mmHg, and rate-pressure-product recovery from 15% to 6%), following severe, but not mild, ischemia. The increased IRI in NLRX1 KO hearts was associated with depressed Akt signaling at early reperfusion; other survival pathways or inflammatory parameters were not affected. Metabolically, NLRX1 KO hearts displayed increased lactate production and glucose oxidation relative to fatty acid oxidation, associated with increased pyruvate dehydrogenase flux and 10% higher cardiac oxygen consumption. Conclusion: Deletion of the mitochondrially-located NOD-like sensor NLRX1 exacerbates severe cardiac IR injury, possibly through impaired Akt signaling, and increases cardiac glucose metabolism

    Mitochondrial long chain fatty acid beta-oxidation in man and mouse

    No full text
    Several mouse models for mitochondrial fatty acid beta-oxidation (FAO) defects have been developed. So far, these models have contributed little to our current understanding of the pathophysiology. The objective of this study was to explore differences between murine and human FAO. Using a combination of analytical, biochemical and molecular methods, we compared fibroblasts of long chain acyl-CoA dehydrogenase knockout (LCAD(-/-)), very long chain acyl-CoA dehydrogenase knockout (VLCAD(-/-)) and wild type mice with fibroblasts of VLCAD-deficient patients and human controls. We show that in mice, LCAD and VLCAD have overlapping and distinct roles in FAO. The absence of VLCAD is apparently fully compensated, whereas LCAD deficiency is not. LCAD plays an essential role in the oxidation of unsaturated fatty acids such as oleic acid, but seems redundant in the oxidation of saturated fatty acids. In strong contrast, LCAD is neither detectable at the mRNA level nor at the protein level in men, making VLCAD indispensable in FAO. Our findings open new avenues to employ the existing mouse models to study the pathophysiology of human FAO defect
    corecore