3 research outputs found

    Stellar wind properties of the nearly complete sample of O stars in the low metallicity young star cluster NGC 346 in the SMC galaxy

    Get PDF
    CONTEXT: Massive stars are among the main cosmic engines driving the evolution of star-forming galaxies. Their powerful ionising radiation and stellar winds inject a large amount of energy in the interstellar medium. Furthermore, mass-loss (M˙ ) through radiatively driven winds plays a key role in the evolution of massive stars. Even so, the wind mass-loss prescriptions used in stellar evolution models, population synthesis, and stellar feedback models often disagree with mass-loss rates empirically measured from the UV spectra of low metallicity massive stars. AIMS: The most massive young star cluster in the low metallicity Small Magellanic Cloud galaxy is NGC 346. This cluster contains more than half of all O stars discovered in this galaxy so far. A similar age, metallicity (Z), and extinction, the O stars in the NGC 346 cluster are uniquely suited for a comparative study of stellar winds in O stars of different subtypes. We aim to use a sample of O stars within NGC 346 to study stellar winds at low metallicity METHODS: We mapped the central 10 of NGC 346 with the long-slit UV observations performed by the Space Telescope Imaging Spectrograph (STIS) on board of the Hubble Space Telescope and complemented these new datasets with archival observations. Multi-epoch observations allowed for the detection of wind variability. The UV dataset was supplemented by optical spectroscopy and photometry. The resulting spectra were analysed using a non-local thermal equilibrium model atmosphere code (PoWR) to determine wind parameters and ionising fluxes. RESULTS: The effective mapping technique allowed us to obtain a mosaic of almost the full extent of the cluster and resolve stars in its core. Among hundreds of extracted stellar spectra, 21 belong to O stars. Nine of them are classified as O stars for the first time. We analyse, in detail, the UV spectra of 19 O stars (with a further two needing to be analysed in a later paper due to the complexity of the wind lines as a result of multiplicity). This more than triples the number of O stars in the core of NGC 346 with constrained wind properties. We show that the most commonly used theoretical mass-loss recipes for O stars over-predict mass-loss rates. We find that the empirical scaling between mass-loss rates (M˙ ) and luminosity (L), M˙ ∝ L^{2.4}, is steeper than theoretically expected by the most commonly used recipes. In agreement with the most recent theoretical predictions, we find within M˙ ∝ Z α that α is dependent upon L. Only the most luminous stars dominate the ionisation feedback, while the weak stellar winds of O stars in NGC 346 and the lack of previous supernova explosions in this cluster restrict the kinetic energy input

    Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: a case study

    Get PDF
    Background: Highly malignant gliomas are characterized by rapid growth, extensive local tissue infiltration and the resulting overall dismal clinical outcome. Gaining any additional insights into the complex interaction between this aggressive brain tumor and its microenvironment is therefore critical. Currently, the standard imaging modalities to investigate the crucial interface between tumor growth and invasion in vitro are light and confocal laser scanning microscopy. While immensely useful in cell culture, integrating these modalities with this cancer's clinical imaging method of choice, i.e. MRI, is a non-trivial endeavour. However, this integration is necessary, should advanced computational modeling be able to utilize these in vitro data to eventually predict growth behaviour in vivo. We therefore argue that employing the same imaging modality for both the experimental setting and the clinical situation it represents should have significant value from a data integration perspective. In this case study, we have investigated the feasibility of using a specific form of MRI, i.e. magnetic resonance microscopy or MRM, to study the expansion dynamics of a multicellular tumor spheroid in a collagen type I gel. Methods: An U87mEGFR human giloblastoma multicellular spheroid (MTS) containing approximately 4·103 cells was generated and pipetted into a collagen I gel. The sample was then imaged using a T2-weighted 3D spoiled gradient echo pulse sequence on a 14T MRI scanner over a period of 12 hours with a temporal resolution of 3 hours at room temperature. Standard histopathology was performed on the MRM sample, as well as on control samples. Results: We were able to acquire three-dimensional MR images with a spatial resolution of 24 × 24 × 24 μm3. Our MRM data successfully documented the volumetric growth dynamics of an MTS in a collagen I gel over the 12-hour period. The histopathology results confirmed cell viability in the MRM sample, yet displayed distinct patterns of cell proliferation and invasion as compared to control. Conclusion: In this study, we demonstrate that a specific form of MRI, i.e. magnetic resonance microscopy or MRM, can be used to study the dynamic growth of a multicellular tumor spheroid (MTS) with a single cell scale spatial resolution that approaches the level of light microscopy. We argue that MRM can be employed as a complementary non-invasive tool to characterize microscopic MTS expansion, and thus, together with integrative computational modeling, may allow bridging of the experimental and clinical scales more readily.National Institutes of Health (U.S) (CA 085139 )National Institutes of Health (U.S) ( CA 113004)National Center for Research Resources (U.S.) (P41RR14075)Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging and the Department of Radiology at Massachusetts General Hospita

    Shock

    No full text
    corecore