1,174 research outputs found
C^+ distribution around S1 in rho Ophiuchi
We analyze a [C II] 158 micron map obtained with the L2 GREAT receiver on
SOFIA of the emission/reflection nebula illuminated by the early B star S1 in
the rho-OphA cloud core. This data set has been complemented with maps of
CO(3-2), 13CO(3-2) and C18O(3-2), observed as a part of the JCMT Gould Belt
Survey, with archival HCO^+(4-3) JCMT data, as well as with [O I] 63 and 145
micron imaging with Herschel/PACS. The [C II] emission is completely dominated
by the strong PDR emission from the nebula surrounding S1 expanding into the
dense Oph A molecular cloud west and south of S1. The [C II] emission is
significantly blue shifted relative to the CO spectra and also relative to the
systemic velocity, particularly in the northwestern part of the nebula. The [C
II] lines are broader towards the center of the S1 nebula and narrower towards
the PDR shell. The [C II] lines are strongly self-absorbed over an extended
region in the S1 PDR. Based on the strength of the [13C II] F = 2-1 hyperfine
component, [C II] is significantly optically thick over most of the nebula. CO
and 13CO(3-2) spectra are strongly self-absorbed, while C18O(3-2) is single
peaked and centered in the middle of the self-absorption. We have used a simple
two-layer LTE model to characterize the background and foreground cloud
contributing to the [C II] emission. From this analysis we estimate the
extinction due to the foreground cloud to be ~9.9 mag, which is slightly less
than the reddening estimated towards S1. Since some of the hot gas in the PDR
is not traced by low J CO emission, this result appears quite plausible. Using
a plane parallel PDR model with the observed [OI(145)]/[C II] brightness ratio
and an estimated FUV intensity of 3100-5000 G0 suggests that the density of the
[C II] emitting gas is ~3-4x10^3 cm^-3.Comment: Accepted for publication in Astronomy & Astrophysic
Opening the Treasure Chest in Carina
We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest
cluster embedded in it) in the South Pillars region of Carina (i) in [CII],
63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1
transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX
telescope in Chile. We probe the morphology, kinematics, and physical
conditions of the molecular gas and the photon dominated regions (PDRs) in
G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of
the pillar (with red-shifted photo evaporating tails) is consistent with the
effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The
gas in the head of the pillar is strongly influenced by the embedded cluster,
whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII]
and [OI] lines peak at a position close to the embedded star, while all other
tracers peak at another position lying to the north-east consistent with gas
being compressed by the expanding PDR created by the embedded cluster. The
molecular gas inside the globule is probed with the J=2-1 transitions of CO and
isotopologues as well as H2CO, and analyzed using a non-LTE model
(escape-probability approach), while we use PDR models to derive the physical
conditions of the PDR. We identify at least two PDR gas components; the diffuse
part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part
is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII]
detected at 50 positions in the region, we derive optical depths (0.9-5),
excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2.
The total mass of the globule is ~1000 Msun, about half of which is traced by
[CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is
similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract
slightly abridged
The structure of protostellar envelopes derived from submillimeter continuum images
High dynamic range imaging of submillimeter dust emission from the envelopes
of eight young protostars in the Taurus and Perseus star-forming regions has
been carried out using the SCUBA submillimeter camera on the James Clerk
Maxwell Telescope. Good correspondence between the spectral classifications of
the protostars and the spatial distributions of their dust emission is
observed, in the sense that those with cooler spectral energy distributions
also have a larger fraction of the submillimeter flux originating in an
extended envelope compared with a disk. This results from the cool sources
having more massive envelopes rather than warm sources having larger disks.
Azimuthally-averaged radial profiles of the dust emission are used to derive
the power-law index of the envelope density distributions, p (defined by rho
proportional to r^-p), and most of the sources are found to have values of p
consistent with those predicted by models of cloud collapse. However, the
youngest protostars in our sample, L1527 and HH211-mm, deviate significantly
from the theoretical predictions, exhibiting values of p somewhat lower than
can be accounted for by existing models. For L1527 heating of the envelope by
shocks where the outflow impinges on the surrounding medium may explain our
result. For HH211-mm another explanation is needed, and one possibility is that
a shallow density profile is being maintained in the outer envelope by magnetic
fields and/or turbulence. If this is the case star formation must be determined
by the rate at which the support is lost from the cloud, rather than the
hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa
Near-threshold measurement of the 4He(g,n) reaction
A near-threshold 4He(g,n) cross-section measurement has been performed at
MAX-lab. Tagged photons from 23 < Eg < 42 MeV were directed toward a liquid 4He
target, and neutrons were detected by time-of-flight in two liquid-scintillator
arrays. Seven-point angular distributions were measured for eight photon
energies. The results are compared to experimental data measured at comparable
energies and Recoil-Corrected Continuum Shell Model, Resonating Group Method,
and recent Hyperspherical-Harmonic Expansion calculations. The angle-integrated
cross-section data is peaked at a photon energy of about 28 MeV, in
disagreement with the value recommended by Calarco, Berman, and Donnelly in
1983.Comment: 10 pages, 3 figures, some revisions, submitted to Physics Letters
Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures
We present the results of a 2.7 mm continuum interferometric survey of 24
young stellar objects in 11 fields. The target objects range from deeply
embedded Class 0 sources to optical T Tauri sources. This is the first
sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded
stellar systems. The images show a diversity of structure and complexity. The
optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae)
have continuum emission dominated by compact, less than 1", circumstellar
disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have
continuum emission that is extended and compact. The embedded sources (L1448
IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have
continuum emission dominated by the extended envelope, typically more than 85%.
In fact, in many of the deeply embedded systems it is difficult to uniquely
isolate the disk emission component from the envelope extending inward to AU
size scales. All of the target embedded objects are in multiple systems with
separations on scales of 30" or less. Based on the system separation, we place
the objects into three categories: separate envelope (separation > 6500 AU),
common envelope (separation 150-3000 AU), and common disk (separation < 100
AU). These three groups can be linked with fragmentation events during the star
formation process: separate envelopes from prompt initial fragmentation and the
separate collapse of a loosely condensed cloud, common envelopes from
fragmentation of a moderately centrally condensed spherical system, and common
disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte
Structure of the outer layers of cool standard stars
Context: Among late-type red giants, an interesting change occurs in the
structure of the outer atmospheric layers as one moves to later spectral types
in the Hertzsprung-Russell diagram: a chromosphere is always present, but the
coronal emission diminishes and a cool massive wind steps in.
Aims: Where most studies have focussed on short-wavelength observations, this
article explores the influence of the chromosphere and the wind on
long-wavelength photometric measurements.
Methods: The observational spectral energy distributions are compared with
the theoretical predictions of the MARCS atmosphere models for a sample of 9 K-
and M-giants. The discrepancies found are explained using basic models for flux
emission originating from a chromosphere or an ionized wind.
Results: For 7 out of 9 sample stars, a clear flux excess is detected at
(sub)millimeter and/or centimeter wavelengths. The precise start of the excess
depends upon the star under consideration. The flux at wavelengths shorter than
about 1 mm is most likely dominated by an optically thick chromosphere, where
an optically thick ionized wind is the main flux contributor at longer
wavelengths.
Conclusions: Although the optical to mid-infrared spectrum of the studied K-
and M-giants is well represented by a radiative equilibrium atmospheric model,
the presence of a chromosphere and/or ionized stellar wind at higher altitudes
dominates the spectrum in the (sub)millimeter and centimeter wavelength ranges.
The presence of a flux excess also has implications on the role of these stars
as fiducial spectrophotometric calibrators in the (sub)millimeter and
centimeter wavelength range.Comment: 13 pages, 6 figures, 7 pages of online material, submitted to A&
Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities
Differential cross sections for Compton scattering from the deuteron were
measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at
nominal laboratory angles of , , and . Tagged
photons were scattered from liquid deuterium and detected in three NaI
spectrometers. By comparing the data with theoretical calculations in the
framework of a one-boson-exchange potential model, the sum and difference of
the isospin-averaged nucleon polarizabilities, and (in units of fm),
have been determined. By combining the latter with the global-averaged value
for and using the predictions of the Baldin sum rule for
the sum of the nucleon polarizabilities, we have obtained values for the
neutron electric and magnetic polarizabilities of (total) (model) and (total) (model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The
cross sections are slightly different due to improvements in the analysi
- …