1,148 research outputs found
Recommended from our members
A high resolution millimetre and submillimetre study of W3
The continuum bolometer receiver on the James Clerk Maxwell telescope has been used to map the dense core of the star formation region W3 with a spatial resolution of 15-20 arcsec. At 350 and 800 μm, the region appears as two principal peaks around the known IR sources IRS4 and IRS5, while at 1100 μm, a further peak is noted which is interpreted as being due to free-free emission around IRS2. Taking into account the free-free contribution to the intensity, the continuum dust emission from the region is found to be consistent with optically thin emission at all of the three wavelengths considered. Values for the dust optical depth, hydrogen column density, mass, and central density have been obtained for each of the main peaks
Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint
We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention
Fostering Global-Mindedness in Teacher Preparation
Teacher education programs require attention to the rapid changes in the world, in part because populations are becoming increasingly diverse. These rapidly changing classroom environments have prompted a need to train teachers who can communicate with and teach students from increasingly diverse backgrounds. In addition, they must have an understanding of cultural family values and practices which influence individual students among the various ethnic populations they teach. This paper will describe steps taken by one College of Education to create international partnerships and learning experiences in an effort to enhance their teacher training programs and develop an environment of global-mindedness
A Submillimeter Study of the Star-Forming Region NGC7129
New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps
of the NGC7129 star forming region are presented, complemented by C18O J=3-2
spectra at several positions within the mapped region. The maps include the
Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and
several other pre-stellar sources embedded within the molecular ridge.
The SCUBA maps help us understand the nature of the pre-main sequence stars
in this actively star forming region. A deeply embedded submillimeter source,
SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar
core or possibly a protostar. The highest continuum peak emission is identified
with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234,
and also responsible for both the optical jet and the molecular outflow. The
gas and dust masses are found to be consistent, suggesting little or no CO
depletion onto grains. The dust emissivity index is lower towards the dense
compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding
cloud, implying small size grains in the PDR ridge, whose mantles have been
evaporated by the intense UV radiation.Comment: Accepted by Ap
The structure of protostellar envelopes derived from submillimeter continuum images
High dynamic range imaging of submillimeter dust emission from the envelopes
of eight young protostars in the Taurus and Perseus star-forming regions has
been carried out using the SCUBA submillimeter camera on the James Clerk
Maxwell Telescope. Good correspondence between the spectral classifications of
the protostars and the spatial distributions of their dust emission is
observed, in the sense that those with cooler spectral energy distributions
also have a larger fraction of the submillimeter flux originating in an
extended envelope compared with a disk. This results from the cool sources
having more massive envelopes rather than warm sources having larger disks.
Azimuthally-averaged radial profiles of the dust emission are used to derive
the power-law index of the envelope density distributions, p (defined by rho
proportional to r^-p), and most of the sources are found to have values of p
consistent with those predicted by models of cloud collapse. However, the
youngest protostars in our sample, L1527 and HH211-mm, deviate significantly
from the theoretical predictions, exhibiting values of p somewhat lower than
can be accounted for by existing models. For L1527 heating of the envelope by
shocks where the outflow impinges on the surrounding medium may explain our
result. For HH211-mm another explanation is needed, and one possibility is that
a shallow density profile is being maintained in the outer envelope by magnetic
fields and/or turbulence. If this is the case star formation must be determined
by the rate at which the support is lost from the cloud, rather than the
hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa
Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A
Magnetic fields are believed to play a crucial role in the process of star
formation. We compare high-angular resolution observations of the submillimeter
polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a
low-mass protostar, with models of the collapse of magnetized molecular cloud
cores. Assuming a uniform dust alignment efficiency, we computed the Stokes
parameters and synthetic polarization maps from the model density and magnetic
field distribution by integrations along the line-of-sight and convolution with
the interferometric response. The synthetic maps are in good agreement with the
data. The best-fitting models were obtained for a protostellar mass of 0.8
solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux
ratio ~2 times the critical value. The magnetic field morphology in NGC 1333
IRAS 4A is consistent with the standard theoretical scenario for the formation
of solar-type stars, where well-ordered, large-scale, rather than turbulent,
magnetic fields control the evolution and collapse of the molecular cloud cores
from which stars form.Comment: 4 pages, 5 figures. Accepted by Astronomy and Astrophysic
Emergence Characteristics of Several Annual Weeds
No other event in the life cycle of weeds affects scouting and management timing as greatly as weed emergence. The timing and intensity of weed emergence affect everything from the effectiveness of burndown herbicides and preplant tillage, to timing of postplant tillage and herbicide application, to competitiveness of weeds that escape control, to seed production by surviving plants, to eventually population shifts. Given the importance of weed emergence to all forms of weed management, it seems logical that we should give greater attention to understanding and predicting weed emergence as affected by environmental factors, weed species, and management practices
Submillimeter Observations of the Ultraluminous BAL Quasar APM 08279+5255
With an inferred bolometric luminosity of 5\times10^{15}{\rm \lsun}, the
recently identified z=3.87, broad absorption line quasar APM 08279+5255 is
apparently the most luminous object currently known. As half of its prodigious
emission occurs in the infrared, APM 08279+5255 also represents the most
extreme example of an Ultraluminous Infrared Galaxy. Here, we present new
submillimeter observations of this phenomenal object; while indicating that a
vast quantity of dust is present, these data prove to be incompatible with
current models of emission mechanisms and reprocessing in ultraluminous
systems. The influence of gravitational lensing upon these models is considered
and we find that while the emission from the central continuum emitting region
may be significantly enhanced, lensing induced magnification cannot easily
reconcile the models with observations. We conclude that further modeling,
including the effects of any differential magnification is required to explain
the observed emission from APM 08279+5255.Comment: 12 Pages with Two figures. Accepted for publication in the
Astrophysical Journal Letter
Spitzer observations of HH54 and HH7-11: mapping the H2 ortho-to-para ratio in shocked molecular gas
We report the results of spectroscopic mapping observations carried out
toward the Herbig-Haro objects HH7-11 and HH54 over the 5.2 - 37 micron region
using the Infrared Spectrograph of the Spitzer Space Telescope. These
observations have led to the detection and mapping of the S(0) - S(7) pure
rotational lines of molecular hydrogen, together with emissions in fine
structure transitions of Ne+, Si+, S, and Fe+. The H2 rotational emissions
indicate the presence of warm gas with a mixture of temperatures in the range
400 - 1200 K, consistent with the expected temperature behind nondissociative
shocks of velocity ~ 10 - 20 km/s, while the fine structure emissions originate
in faster shocks of velocity 35 - 90 km/s that are dissociative and ionizing.
Maps of the H2 line ratios reveal little spatial variation in the typical
admixture of gas temperatures in the mapped regions, but show that the H2
ortho-to-para ratio is quite variable, typically falling substantially below
the equilibrium value of 3 attained at the measured gas temperatures. The
non-equilibrium ortho-to-para ratios are characteristic of temperatures as low
as ~ 50 K, and are a remnant of an earlier epoch, before the gas temperature
was elevated by the passage of a shock. Correlations between the gas
temperature and H2 ortho-to-para ratio show that ortho-to-para ratios < 0.8 are
attained only at gas temperatures below ~ 900 K; this behavior is consistent
with theoretical models in which the conversion of para- to ortho-H2 behind the
shock is driven by reactive collisions with atomic hydrogen, a process which
possesses a substantial activation energy barrier (E_A/k ~ 4000 K) and is
therefore very inefficient at low temperature.Comment: 45 pages, including 16 figures. Accepted for publication in Ap
- …