1,148 research outputs found

    Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint

    Get PDF
    We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention

    Fostering Global-Mindedness in Teacher Preparation

    Get PDF
    Teacher education programs require attention to the rapid changes in the world, in part because populations are becoming increasingly diverse. These rapidly changing classroom environments have prompted a need to train teachers who can communicate with and teach students from increasingly diverse backgrounds. In addition, they must have an understanding of cultural family values and practices which influence individual students among the various ethnic populations they teach. This paper will describe steps taken by one College of Education to create international partnerships and learning experiences in an effort to enhance their teacher training programs and develop an environment of global-mindedness

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    The structure of protostellar envelopes derived from submillimeter continuum images

    Get PDF
    High dynamic range imaging of submillimeter dust emission from the envelopes of eight young protostars in the Taurus and Perseus star-forming regions has been carried out using the SCUBA submillimeter camera on the James Clerk Maxwell Telescope. Good correspondence between the spectral classifications of the protostars and the spatial distributions of their dust emission is observed, in the sense that those with cooler spectral energy distributions also have a larger fraction of the submillimeter flux originating in an extended envelope compared with a disk. This results from the cool sources having more massive envelopes rather than warm sources having larger disks. Azimuthally-averaged radial profiles of the dust emission are used to derive the power-law index of the envelope density distributions, p (defined by rho proportional to r^-p), and most of the sources are found to have values of p consistent with those predicted by models of cloud collapse. However, the youngest protostars in our sample, L1527 and HH211-mm, deviate significantly from the theoretical predictions, exhibiting values of p somewhat lower than can be accounted for by existing models. For L1527 heating of the envelope by shocks where the outflow impinges on the surrounding medium may explain our result. For HH211-mm another explanation is needed, and one possibility is that a shallow density profile is being maintained in the outer envelope by magnetic fields and/or turbulence. If this is the case star formation must be determined by the rate at which the support is lost from the cloud, rather than the hydrodynamical properties of the envelope, such as the sound speed.Comment: Accepted for publication in the Astrophysical Journa

    Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A

    Full text link
    Magnetic fields are believed to play a crucial role in the process of star formation. We compare high-angular resolution observations of the submillimeter polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a low-mass protostar, with models of the collapse of magnetized molecular cloud cores. Assuming a uniform dust alignment efficiency, we computed the Stokes parameters and synthetic polarization maps from the model density and magnetic field distribution by integrations along the line-of-sight and convolution with the interferometric response. The synthetic maps are in good agreement with the data. The best-fitting models were obtained for a protostellar mass of 0.8 solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux ratio ~2 times the critical value. The magnetic field morphology in NGC 1333 IRAS 4A is consistent with the standard theoretical scenario for the formation of solar-type stars, where well-ordered, large-scale, rather than turbulent, magnetic fields control the evolution and collapse of the molecular cloud cores from which stars form.Comment: 4 pages, 5 figures. Accepted by Astronomy and Astrophysic

    Emergence Characteristics of Several Annual Weeds

    Get PDF
    No other event in the life cycle of weeds affects scouting and management timing as greatly as weed emergence. The timing and intensity of weed emergence affect everything from the effectiveness of burndown herbicides and preplant tillage, to timing of postplant tillage and herbicide application, to competitiveness of weeds that escape control, to seed production by surviving plants, to eventually population shifts. Given the importance of weed emergence to all forms of weed management, it seems logical that we should give greater attention to understanding and predicting weed emergence as affected by environmental factors, weed species, and management practices

    Submillimeter Observations of the Ultraluminous BAL Quasar APM 08279+5255

    Get PDF
    With an inferred bolometric luminosity of 5\times10^{15}{\rm \lsun}, the recently identified z=3.87, broad absorption line quasar APM 08279+5255 is apparently the most luminous object currently known. As half of its prodigious emission occurs in the infrared, APM 08279+5255 also represents the most extreme example of an Ultraluminous Infrared Galaxy. Here, we present new submillimeter observations of this phenomenal object; while indicating that a vast quantity of dust is present, these data prove to be incompatible with current models of emission mechanisms and reprocessing in ultraluminous systems. The influence of gravitational lensing upon these models is considered and we find that while the emission from the central continuum emitting region may be significantly enhanced, lensing induced magnification cannot easily reconcile the models with observations. We conclude that further modeling, including the effects of any differential magnification is required to explain the observed emission from APM 08279+5255.Comment: 12 Pages with Two figures. Accepted for publication in the Astrophysical Journal Letter

    Spitzer observations of HH54 and HH7-11: mapping the H2 ortho-to-para ratio in shocked molecular gas

    Get PDF
    We report the results of spectroscopic mapping observations carried out toward the Herbig-Haro objects HH7-11 and HH54 over the 5.2 - 37 micron region using the Infrared Spectrograph of the Spitzer Space Telescope. These observations have led to the detection and mapping of the S(0) - S(7) pure rotational lines of molecular hydrogen, together with emissions in fine structure transitions of Ne+, Si+, S, and Fe+. The H2 rotational emissions indicate the presence of warm gas with a mixture of temperatures in the range 400 - 1200 K, consistent with the expected temperature behind nondissociative shocks of velocity ~ 10 - 20 km/s, while the fine structure emissions originate in faster shocks of velocity 35 - 90 km/s that are dissociative and ionizing. Maps of the H2 line ratios reveal little spatial variation in the typical admixture of gas temperatures in the mapped regions, but show that the H2 ortho-to-para ratio is quite variable, typically falling substantially below the equilibrium value of 3 attained at the measured gas temperatures. The non-equilibrium ortho-to-para ratios are characteristic of temperatures as low as ~ 50 K, and are a remnant of an earlier epoch, before the gas temperature was elevated by the passage of a shock. Correlations between the gas temperature and H2 ortho-to-para ratio show that ortho-to-para ratios < 0.8 are attained only at gas temperatures below ~ 900 K; this behavior is consistent with theoretical models in which the conversion of para- to ortho-H2 behind the shock is driven by reactive collisions with atomic hydrogen, a process which possesses a substantial activation energy barrier (E_A/k ~ 4000 K) and is therefore very inefficient at low temperature.Comment: 45 pages, including 16 figures. Accepted for publication in Ap
    corecore