9,635 research outputs found
Frequency-Weighted Model Reduction with Applications to Structured Models
In this paper, a frequency-weighted extension of a
recently proposed model reduction method for linear systems
is presented. The method uses convex optimization and can be
used both with sample data and exact models. We also obtain
bounds on the frequency-weighted error. The method is combined
with a rank-minimization heuristic to approximate multiinput–
multi-output systems.We also present two applications—
environment compensation and simplification of interconnected
models — where we argue the proposed methods are useful
Second-law-like inequalities with information and their interpretations
In a thermodynamic process with measurement and feedback, the second law of
thermodynamics is no longer valid. In its place, various second-law-like
inequalities have been advanced that each incorporate a distinct additional
term accounting for the information gathered through measurement. We
quantitatively compare a number of these information measures using an
analytically tractable model for the feedback cooling of a Brownian particle.
We find that the information measures form a hierarchy that reveals a web of
interconnections. To untangle their relationships, we address the origins of
the information, arguing that each information measure represents the minimum
thermodynamic cost to acquire that information through a separate, distinct
measurement protocol.Comment: 29 pages, 5 figure
Photon generation in an electromagnetic cavity with a time-dependent boundary
We report the observation of photon generation in a microwave cavity with a
time-dependent boundary condition. Our system is a microfabricated quarter-wave
coplanar waveguide cavity. The electrical length of the cavity is varied using
the tunable inductance of a superconducting quantum interference device. It is
measured in the quantum regime, where the temperature is significantly less
than the resonance frequency (~ 5 GHz). When the length is modulated at
approximately twice the static resonance frequency, spontaneous oscillations of
the cavity field are observed. Time-resolved measurements of the dynamical
state of the cavity show multiple stable states. The behavior is well described
by theory. Connections to the dynamical Casimir effect are discussed.Comment: 5 pages, 3 Figure
The pumpistor: a linearized model of a flux-pumped SQUID for use as a negative-resistance parametric amplifier
We describe a circuit model for a flux-driven SQUID. This is useful for
developing insight into how these devices perform as active elements in
parametric amplifiers. The key concept is that frequency mixing in a
flux-pumped SQUID allows for the appearance of an effective negative
resistance. In the three-wave, degenerate case treated here, a negative
resistance appears only over a certain range of allowed input signal phase.
This model readily lends itself to testable predictions of more complicated
circuits.Comment: 4 pages, 3 figure
Efficient Computations of a Security Index for False Data Attacks in Power Networks
The resilience of Supervisory Control and Data Acquisition (SCADA) systems
for electric power networks for certain cyber-attacks is considered. We analyze
the vulnerability of the measurement system to false data attack on
communicated measurements. The vulnerability analysis problem is shown to be
NP-hard, meaning that unless there is no polynomial time algorithm to
analyze the vulnerability of the system. Nevertheless, we identify situations,
such as the full measurement case, where it can be solved efficiently. In such
cases, we show indeed that the problem can be cast as a generalization of the
minimum cut problem involving costly nodes. We further show that it can be
reformulated as a standard minimum cut problem (without costly nodes) on a
modified graph of proportional size. An important consequence of this result is
that our approach provides the first exact efficient algorithm for the
vulnerability analysis problem under the full measurement assumption.
Furthermore, our approach also provides an efficient heuristic algorithm for
the general NP-hard problem. Our results are illustrated by numerical studies
on benchmark systems including the IEEE 118-bus system
Fast readout of a single Cooper-pair box using its quantum capacitance
We have fabricated a single Cooper-pair box (SCB) together with an on-chip
lumped element resonator. By utilizing the quantum capacitance of the SCB, its
state can be read out by detecting the phase of a radio-frequency (rf) signal
reflected off the resonator. The resonator was optimized for fast readout. By
studying quasiparticle tunneling events in the SCB, we have characterized the
performance of the readout and found that we can perform a single shot parity
measurement in approximately 50 ns. This is an order of magnitude faster than
previously reported measurements.Comment: 7 pages, 5 figure
Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption
Context. The Lyman alpha emission line of galaxies is an important tool for
finding galaxies at high redshift, and thus probe the structure of the early
universe. However, the resonance nature of the line and its sensitivity to dust
and neutral gas is still not fully understood.
Aims. We present measurements of the velocity, covering fraction and optical
depth of neutral gas in front of two well known local blue compact galaxies
that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test
observationally the hypothesis that Lyman alpha can escape through neutral gas
by being Doppler shifted out of resonance.
Methods. We present integral field spectroscopy from the GIRAFFE/Argus
spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength
resolution allows us to accurately measure the velocity of the ionized and
neutral gas through the H-alpha emission and Na D absorption, which traces the
ionized medium and cold interstellar gas, respectively. We also present
independent measurements with the VLT/X-shooter spectrograph which confirm our
results.
Results. For ESO 338-IG04, we measure no significant shift of neutral gas.
The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from
knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s.
Based on the relative strength of the Na D absorption lines, we estimate low
covering fractions of neutral gas (down to 10%) in all three cases.
Conclusions. The Na D absorption likely occurs in dense clumps with higher
column densities than where the bulk of the Ly-alpha scattering takes place.
Still, we find no strong correlation between outflowing neutral gas and a high
Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies
are therefore likely escaping due to a low column density and/or covering
fraction.Comment: 9 pages, 3 figure
Scheduling concurrent rpcs in the globe location service
Globe is a wide-area distributed system in which an object can be located through its location-independent identifier. This is done by means of a worldwide location service. In contrast to comparable services, the approach that is followed in Globe allows objects to be highly mobile, replicated, or physically distributed. In addition, our algorithms adapt dynamically to an object’s behavior, resulting in an efficient and above all, scalable approach. The algorithms for updating and looking up an object’s location are expressed as high-level operations on a worldwide search tree. We have designed and implemented a middleware layer providing all the necessary network communication. In this paper, we show that such a layer hardly introduces any additional overhead. The important consequence is that our location service can be designed and implemented at a high level of abstraction. Compared to the design and implementation of comparable worldwide services, this approach is quite unique
Microwave Dielectric Heating of Drops in Microfluidic Devices
We present a technique to locally and rapidly heat water drops in
microfluidic devices with microwave dielectric heating. Water absorbs microwave
power more efficiently than polymers, glass, and oils due to its permanent
molecular dipole moment that has a large dielectric loss at GHz frequencies.
The relevant heat capacity of the system is a single thermally isolated
picoliter drop of water and this enables very fast thermal cycling. We
demonstrate microwave dielectric heating in a microfluidic device that
integrates a flow-focusing drop maker, drop splitters, and metal electrodes to
locally deliver microwave power from an inexpensive, commercially available 3.0
GHz source and amplifier. The temperature of the drops is measured by observing
the temperature dependent fluorescence intensity of cadmium selenide
nanocrystals suspended in the water drops. We demonstrate characteristic
heating times as short as 15 ms to steady-state temperatures as large as 30
degrees C above the base temperature of the microfluidic device. Many common
biological and chemical applications require rapid and local control of
temperature, such as PCR amplification of DNA, and can benefit from this new
technique.Comment: 6 pages, 4 figure
- …
