3 research outputs found
Clinically validated markers of the extracellular matrix remodelling are altered by potential anti-fibrotic compounds in a human lung fibrosis ex vivo model
Background: Pulmonary fibrosis (PF) is characterized by excessive extracellular matrix (ECM) remodeling. Clinically validated ECM neoepitopes markers, related to progressive PF, may be useful for the evaluation of potential anti-fibrotic effects. Aim: The aim was to evaluate ECM remodelling (ECMR) in a human ex vivo precision-cut lung slice (PCLS) model. Methods: Human PF tissue was collected from two donors during lung transplantation. Within 24hours, the lungs were processed into PCLSs. The slices were cultured 2 pr/well and in triplicates for 48hours in serum free medium with 1nM-10μM nintedanib or 100pM-1µM mTOR/PI3K inhibitor omipalisib (GSK2126458). Responsiveness was tested using Lipopolysaccaride (LPS) and cytotoxicity using lactate dehydrogenase (LDH). Markers of collagen type I, III and VI formation (P1NP, PRO-C3, PRO-C6) and type III collagen degradation (C3M) were assessed in the supernatants. The subpleural and central lung regions were used and evaluated by hematoxylin and eosin staining. Results: The tissue from both donors was responsive to LPS and no toxicity was seen with the selected compound doses using LDH. P1NP, PRO-C3, and C3M were significantly reduced by 1nM-1µM omipalisib (p<0.05-0.001) including the IC50 value around 40-50nM. Non-significant reductions of PRO-C6 were seen. Data varied depending on region and donor. Similar trends were observed for nintedanib, however no significant changes were seen in this model. Conclusion: We found that an mTOR/PI3K inhibitor decreased markers of ECMR in a human PF ex vivo model, potential as a tool for evaluating anti-fibrotic compounds in a 3D PF structure
Longitudinal serological assessment of type VI collagen turnover is related to progression in a real-world cohort of idiopathic pulmonary fibrosis
Abstract Background Remodeling of the extracellular matrix (ECM) is a central mechanism in the progression of idiopathic pulmonary fibrosis (IPF), and remodeling of type VI collagen has been suggested to be associated with disease progression. Biomarkers that reflect and predict the progression of IPF would provide valuable information for clinicians when treating IPF patients. Methods Two serological biomarkers reflecting formation (PRO-C6) and degradation (C6M) of type VI collagen were evaluated in a real-world cohort of 178 newly diagnoses IPF patients. All patients were treatment naïve at the baseline visit. Blood samples and clinical data were collected from baseline, six months, and 12 months visit. The biomarkers were measured by competitive ELISA using monoclonal antibodies. Results Patients with progressive disease had higher (P = 0.0099) serum levels of PRO-C6 compared to those with stable disease over 12 months with an average difference across all timepoints of 12% (95% CI 3–22), whereas C6M levels tended (P = 0.061) to be higher in patients with progressive disease compared with stable patients over 12 months with an average difference across all timepoints of 12% (95% CI − 0.005–27). Patients who did not receive antifibrotic medicine had a greater increase of C6M (P = 0.043) compared to treated patients from baseline over 12 months with an average difference across all timepoints of 12% (95% CI − 0.07–47). There were no differences in biomarker levels between patients receiving pirfenidone or nintedanib. Conclusions Type VI collagen formation was related to progressive disease in patients with IPF in a real-world cohort and antifibrotic therapy seemed to affect the degradation of type VI collagen. Type VI collagen formation and degradation products might be potential biomarkers for disease progression in IPF