13 research outputs found

    Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: Evidence from in vitro and in vivo studies

    Get PDF
    Curcumin is known to exhibit antioxidant and tissue-healing properties and has recently attracted the attention of the biomedical community for potential use in advanced therapies. This work reports the formulation and characterization of oil-in-water F127 microemulsions to enhance the bioavailability of curcumin Microemulsions showed a high encapsulation efficiency and prolonged release. To investigate the interactions of curcumin with one unit of the polymeric chain of surfactant F127, ethyl butyrate, and sodium octanoate, as well as the interaction between ethyl butyrate and one unit of the F127 polymer chain, the Density Functional Theory (DFT) calculations at the M06-2X level of theory, were performed in water solution. The MTT assay was used to assess the cytotoxicity of free and encapsulated curcumin on non-malignant and malignant cell lines. Combination effects were calculated according to Chou-Talalay’s principles. Results of in vitro studies indicated that MCF7 and HepG2 cells were more sensitive to curcumin microemulsions. Moreover, a synergistic relationship was observed between curcumin microemulsions and cisplatin in all affected fractions of MCF7 and HepG2 cells (CI < 0.9). For in vivo investigation, thioacetamide-intoxicated rats received thioacetamide (100 mg/kg Sc) followed by curcumin microemulsions (30 mg/kg Ip). Thioacetamideintoxicated rats showed elevated serum liver enzymes, blood urea nitrogen (BUN), and creatinine levels, and a significant reduction in liver superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05). Curcumin microemulsions reduced liver enzymes and serum creatinine and increased the activity of antioxidant enzymes in thioacetamide-treated rats in comparison to the untreated thioacetamide-intoxicated group. Histopathological investigations confirmed the biochemical findings. Overall, the current results showed the desirable hepatoprotective, nephroprotective, and anti-cancer effects of curcumin microemulsions

    Visible-LED-light-driven photocatalytic synthesis of N-heterocycles mediated by a polyoxometalate-containing mesoporous zirconium metal-organic framework

    No full text
    A mesoporous metal-organic framework with photothermal properties, namely PCN-222, was solvothermally synthesized from meso-tetra(4-carboxyphenyl)porphyrin and zirconium chloride employing both benzoic acid (BA) and trifluoroacetic acid (TFA) as modifiers. The MOF material subsequently served as a porous support for a polyoxometalate (POM), H3PW12O40, via a facile impregnation method which rendered a novel porous POM@PCN-222 composite. The solid was characterized by FT-IR, PXRD, SEM/EDX, TGA/DSC, ICP-OES, UV–Vis DRS, cyclic voltammetry (CV), and BET surface area. The one-pot synthesis of N-heterocycles (pyridine derivatives) was investigated utilizing the hybrid material via one-pot pseudo four-component reaction between aromatic aldehydes, methyl acetoacetate and ammonium acetate promoted under visible LED light irradiation in the presence of molecular oxygen as green oxidant. Products were selectively formed in good yields in the presence of the recyclable heterogeneous solid. Remarkably, POM@PCN-222 showed a superior performance for this procedure as compared to both unfunctionalized MOF and POM. The photosensitizer and photothermal properties of the porphyrin linkers combined with Lewis acidic sites derived from PW12 and Zr6-nodes were responsible for the observed excelling performance. To understand the mechanism, control investigations, electron paramagnetic resonance (EPR) analysis and FT-IR reaction monitoring were performed. The work discloses, for the first time, a simple and environmentally friendly approach for the direct production of pyridines via one-pot thermo-photocatalytic approach using a novel POM-modified MOF in the absence of any chemical additive. © 202

    Genetics of metabolic and viral liver diseases

    No full text
    corecore