26 research outputs found

    Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae

    No full text
    The budding yeast Saccharomyces cerevisiae is a powerful and versatile model organism for studying multiple aspects of the biology of eukaryotic cells, including the molecular principles underlying autophagy. One of the unique advantages of this unicellular system is its amenability to genetic and biochemical approaches, which had a pivotal role in the discovery and characterization of most of the autophagy-related (Atg) proteins, the central players of autophagy. The relevance of investigating autophagy in this cell model lies in the high conservation of this pathway among eukaryotes, i.e., most of the yeast Atg proteins possess one or more mammalian orthologs. In addition to the experimental advantages, a very large collection of reagents keeps S. cerevisiae in a leading position for the study of the molecular mechanism and regulation of autophagy. In this chapter, we describe fluorescence microscopy and biochemical methods that allow to monitor in vivo the assembly the of Atg machinery, a key step of autophagy. These approaches can be very useful to those researchers that would like to assess the progression of the autophagosomal precursor structure formation under various conditions, in the presence of specific Atg protein mutants or in the absence of other factors.</p

    Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae

    No full text
    The budding yeast Saccharomyces cerevisiae is a powerful and versatile model organism for studying multiple aspects of the biology of eukaryotic cells, including the molecular principles underlying autophagy. One of the unique advantages of this unicellular system is its amenability to genetic and biochemical approaches, which had a pivotal role in the discovery and characterization of most of the autophagy-related (Atg) proteins, the central players of autophagy. The relevance of investigating autophagy in this cell model lies in the high conservation of this pathway among eukaryotes, i.e., most of the yeast Atg proteins possess one or more mammalian orthologs. In addition to the experimental advantages, a very large collection of reagents keeps S. cerevisiae in a leading position for the study of the molecular mechanism and regulation of autophagy. In this chapter, we describe fluorescence microscopy and biochemical methods that allow to monitor in vivo the assembly the of Atg machinery, a key step of autophagy. These approaches can be very useful to those researchers that would like to assess the progression of the autophagosomal precursor structure formation under various conditions, in the presence of specific Atg protein mutants or in the absence of other factors

    Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol

    No full text
    Antipsychotic drugs (APDs) have been reported to induce lipogenic genes. This has been proposed to contribute to their efficacy in treating schizophrenia and other psychiatric disorders, as well as the metabolic side effects often associated with these drugs. The precise mechanism for the lipogenic effects of APDs is unknown, but is believed to involve increased activation of the lipogenic transcription factors, such as sterol regulatory element binding proteins (SREBPs). In a series of experiments in a model cell line, we found that a panel of typical and atypical APDs inhibited transport of lipoprotein-derived cholesterol to the endoplasmic reticulum (ER), which houses the cholesterol homeostatic machinery. APDs belong to the class of cationic amphiphiles and as has been shown for other amphiphiles, caused lipoprotein-derived cholesterol to accumulate intracellularly, preventing it from being esterified in the ER and suppressing SREBP activation. APDs did not activate the liver X receptor, another transcription factor involved in lipogenesis. However, these drugs markedly reduced cholesterol synthesis. This paradoxical result indicates that the upregulation of SREBP-target genes by APDs may not translate to increased cellular cholesterol levels. In conclusion, we have determined that APDs disrupt intracellular trafficking and synthesis of cholesterol, which may have important clinical ramifications. © 2010 Macmillan Publishers Limited. All rights reserved

    Age-Dependent Neuroimmune Modulation of IGF-1R in the Traumatic Mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-dependent neuroimmune modulation following traumatic stress is accompanied by discordant upregulation of Fyn signaling in the frontal cortex, but the mechanistic details of the potential cellular behavior regarding IGF-1R/Fyn have not been established.</p> <p>Methods</p> <p>Trans-synaptic IGF-1R signaling during the traumatic stress was comparably examined in wild type, Fyn (−/−) and MOR (−/−) mice. Techniques included primary neuron culture, in vitro kinase activity, immunoprecipitation, Western Blot, sucrose discontinuous centrifugation. Besides that, [<sup>3</sup> H] incorporation was used to assay lymphocyte proliferation and NK cell activity.</p> <p>Results</p> <p>We demonstrate robust upregulation of synaptic Fyn activity following traumatic stress, with higher amplitude in 2-month mice than that in 1-year counterpart. We also established that the increased Fyn signaling is accompanied by its molecular connection with IGF-1R within the synaptic zone. Detained analysis using Fyn (−/−) and MOR (−/−) mice reveal that IGF-1R/Fyn signaling is governed to a large extent by mu opioid receptor (MOR), and with age-dependent manner; these signaling cascades played a central role in the modulation of lymphocyte proliferation and NK cell activity.</p> <p>Conclusions</p> <p>Our data argued for a pivotal role of synaptic IGF-1R/Fyn signaling controlled by MOR downstream signaling cascades were crucial for the age-dependent neuroimmune modulation following traumatic stress. The result here might present a new quality of synaptic cellular communication governing the stress like events and have significant potential for the development of therapeutic approaches designed to minimize the heightened vulnerability during aging.</p
    corecore