38 research outputs found

    Cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia after a second ChAdOx1 nCoV-19 dose.

    Get PDF
    © 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.Cerebral venous thrombosis (CVT) is the most common and severe manifestation of vaccine-induced immune thrombotic thrombocytopenia (VITT), which is a rare side effect of the SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (Vaxzevria, AstraZeneca/Oxford). The absolute risk of VITT and VITT-related CVT is estimated at 20 and 8 per million first doses of ChAdOx1 nCoV-19, respectively. So far, no definite VITT cases occurring after a second ChAdOx1 nCoV-19 vaccine dose have been reported, raising the question of whether VITT only occurs after a first dose. Two pharmacovigilance studies reported cases of thrombosis with thrombocytopenia after a second ChAdOx1 nCoV-19 dose, but because of lack of clinical data, none of these could be classified as VITT. Knowledge on whether VITT can occur after a second ChAdOx1 nCoV-19 dose is relevant for clinicians and policymakers, especially in low- and middle-income countries, which are currently the main users of adenovirus-based vaccines. We used data from the “CVT after SARS-CoV-2 vaccination” registry to identify VITT-related CVT cases occurring after a second ChAdOx1 nCoV-19 dose. Details of this registry have been published. Briefly, this ongoing study collects data on patients with CVT with symptom onset ≤28 days from SARS-CoV-2 vaccination, regardless of the type and dose of vaccine. The study is endorsed by the European Academy of Neurology and the European Stroke Organization. Investigators are instructed to report consecutive cases from their hospitals. The ethical review board of the Academic Medical Centre issued a waiver of formal approval for this observational study. Each center obtained local permission to carry out the study and acquired informed consent for the use of pseudonymized care data according to national law. We used the case definition criteria of the United Kingdom expert hematology panel to classify cases as definite, probable, possible, or unlikely VITT after ChAdOx1 nCoV-19 administration among CVT cases reported until 1 December 2021.This work was supported by The Netherlands Organisation for Health Research and Development (ZonMw, grant number 10430072110005) (J.M.C.) and the Dr. C. J. Vaillant Foundation (J.M.C.).info:eu-repo/semantics/publishedVersio

    Post-SARS-CoV-2-vaccination cerebral venous sinus thrombosis : an analysis of cases notified to the European Medicines Agency

    Get PDF
    Background and purpose Cerebral venous sinus thrombosis (CVST) has been described after vaccination against SARS-CoV-2. The clinical characteristics of 213 post-vaccination CVST cases notified to the European Medicines Agency are reported. Methods Data on adverse drug reactions after SARS-CoV-2 vaccination notified until 8 April 2021 under the Medical Dictionary for Regulatory Activities Term 'Central nervous system vascular disorders' were obtained from the EudraVigilance database. Post-vaccination CVST was compared with 100 European patients with CVST from before the COVID-19 pandemic derived from the International CVST Consortium. Results In all, 213 CVST cases were identified: 187 after AstraZeneca/Oxford (ChAdOx1 nCov-19) vaccination and 26 after a messenger RNA (mRNA) vaccination (25 with Pfizer/BioNTech, BNT162b2, and one with Moderna, mRNA-1273). Thrombocytopenia was reported in 107/187 CVST cases (57%, 95% confidence interval [CI] 50%-64%) in the ChAdOx1 nCov-19 group, in none in the mRNA vaccine group (0%, 95% CI 0%-13%) and in 7/100 (7%, 95% CI 3%-14%) in the pre-COVID-19 group. In the ChAdOx1 nCov-19 group, 39 (21%) reported COVID-19 polymerase chain reaction tests were performed within 30 days of CVST symptom onset, and all were negative. Of the 117 patients with a reported outcome in the ChAdOx1 nCov-19 group, 44 (38%, 95% CI 29%-47%) had died, compared to 2/10 (20%, 95% CI 6%-51%) in the mRNA vaccine group and 3/100 (3%, 95% CI 1%-8%) in the pre-COVID-19 group. Mortality amongst patients with thrombocytopenia in the ChAdOx1 nCov-19 group was 49% (95% CI 39%-60%). Conclusions Cerebral venous sinus thrombosis occurring after ChAdOx1 nCov-19 vaccination has a clinical profile distinct from CVST unrelated to vaccination. Only CVST after ChAdOx1 nCov-19 vaccination was associated with thrombocytopenia.Peer reviewe

    Cancer and stroke : commonly encountered by clinicians, but little evidence to guide clinical approach

    Get PDF
    The association between stroke and cancer is well-established. Because of an aging population and longer survival rates, the frequency of synchronous stroke and cancer will become even more common. Different pathophysiologic mechanisms have been proposed how cancer or cancer treatment directly or via coagulation disturbances can mediate stroke. Increased serum levels of D-dimer, fibrin degradation products, and CRP are more often seen in stroke with concomitant cancer, and the clot retrieved during thrombectomy has a more fibrin- and platelet-rich constitution compared with that of atherosclerotic etiology. Multiple infarctions are more common in patients with active cancer compared with those without a cancer diagnosis. New MRI techniques may help in detecting typical patterns seen in the presence of a concomitant cancer. In ischemic stroke patients, a newly published cancer probability score can help clinicians in their decision-making when to suspect an underlying malignancy in a stroke patient and to start cancer-screening studies. Treating stroke patients with synchronous cancer can be a delicate matter. Limited evidence suggests that administration of intravenous thrombolysis appears safe in non-axial intracranial and non-metastatic cancer patients. Endovascular thrombectomy is probably rather safe in these patients, but probably futile in most patients placed on palliative care due to their advanced disease. In this topical review, we discuss the epidemiology, pathophysiology, and prognosis of ischemic and hemorrhagic strokes as well as cerebral venous thrombosis and concomitant cancer. We further summarize the current evidence on acute management and secondary preventive therapy.Peer reviewe

    Outcomes of Decompressive Surgery for Patients With Severe Cerebral Venous Thrombosis: DECOMPRESS2 Observational Study

    Get PDF
    BACKGROUND: Decompressive neurosurgery is recommended for patients with cerebral venous thrombosis (CVT) who have large parenchymal lesions and impending brain herniation. This recommendation is based on limited evidence. We report long-term outcomes of patients with CVT treated by decompressive neurosurgery in an international cohort. METHODS: DECOMPRESS2 (Decompressive Surgery for Patients With Cerebral Venous Thrombosis, Part 2) was a prospective, international cohort study. Consecutive patients with CVT treated by decompressive neurosurgery were evaluated at admission, discharge, 6 months, and 12 months. The primary outcome was death or severe disability (modified Rankin Scale scores, 5-6) at 12 months. The secondary outcomes included patient and caregiver opinions on the benefits of surgery. The association between baseline variables before surgery and the primary outcome was assessed by multivariable logistic regression. RESULTS: A total of 118 patients (80 women; median age, 38 years) were included from 15 centers in 10 countries from December 2011 to December 2019. Surgery (115 craniectomies and 37 hematoma evacuations) was performed within a median of 1 day after diagnosis. At last assessment before surgery, 68 (57.6%) patients were comatose, fixed dilated pupils were found unilaterally in 27 (22.9%) and bilaterally in 9 (7.6%). Twelve-month follow-up data were available for 113 (95.8%) patients. Forty-six (39%) patients were dead or severely disabled (modified Rankin Scale scores, 5-6), of whom 40 (33.9%) patients had died. Forty-two (35.6%) patients were independent (modified Rankin Scale scores, 0-2). Coma (odds ratio, 2.39 [95% CI, 1.03-5.56]) and fixed dilated pupil (odds ratio, 2.22 [95% CI, 0.90-4.92]) were predictors of death or severe disability. Of the survivors, 56 (78.9%) patients and 61 (87.1%) caregivers expressed a positive opinion on surgery. CONCLUSIONS: Two-thirds of patients with severe CVT were alive and more than one-third were independent 1 year after decompressive surgery. Among survivors, surgery was judged as worthwhile by 4 out of 5 patients and caregivers. These results support the recommendation to perform decompressive neurosurgery in patients with CVT with impending brain herniation

    Frequency of Thrombocytopenia and Platelet Factor 4/Heparin Antibodies in Patients With Cerebral Venous Sinus Thrombosis Prior to the COVID-19 Pandemic

    Get PDF
    IMPORTANCE Cases of cerebral venous sinus thrombosis in combination with thrombocytopenia have recently been reported within 4 to 28 days of vaccination with the ChAdOx1 nCov-19 (AstraZeneca/Oxford) and Ad.26.COV2.S (Janssen/Johnson & Johnson) COVID-19 vaccines. An immune-mediated response associated with platelet factor 4/heparin antibodies has been proposed as the underlying pathomechanism. OBJECTIVE To determine the frequencies of admission thrombocytopenia, heparin-induced thrombocytopenia, and presence of platelet factor 4/heparin antibodies in patients diagnosed with cerebral venous sinus thrombosis prior to the COVID-19 pandemic. DESIGN, SETTING, AND PARTICIPANTS This was a descriptive analysis of a retrospective sample of consecutive patients diagnosed with cerebral venous sinus thrombosis between January 1987 and March 2018 from 7 hospitals participating in the International Cerebral Venous Sinus Thrombosis Consortium from Finland, the Netherlands, Switzerland, Sweden, Mexico, Iran, and Costa Rica. Of 952 patients, 865 with available baseline platelet count were included. In a subset of 93 patients, frozen plasma samples collected during a previous study between September 2009 and February 2016 were analyzed for the presence of platelet factor 4/heparin antibodies. EXPOSURES Diagnosis of cerebral venous sinus thrombosis. MAIN OUTCOMES AND MEASURES Frequencies of admission thrombocytopenia (platelet count 0.4, in a subset of patients with previously collected plasma samples). RESULTS Of 865 patients (median age, 40 years [interquartile range, 29-53 years], 70% women), 73 (8.4%; 95% CI, 6.8%-10.5%) had thrombocytopenia, which was mild (100-149 x10(3)/mu L) in 52 (6.0%), moderate (50-99 x10(3)/mu L) in 17 (2.0%), and severe ( CONCLUSIONS AND RELEVANCE In patients with cerebral venous sinus thrombosis prior to the COVID-19 pandemic, baseline thrombocytopeniawas uncommon, and heparin-induced thrombocytopenia and platelet factor 4/heparin antibodieswere rare. These findings may inform investigations of the possible association between the ChAdOx1 nCoV-19 and Ad26.COV2.S COVID-19 vaccines and cerebral venous sinus thrombosis with thrombocytopenia.Peer reviewe

    Decompressive surgery in cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia

    Get PDF
    Background and purpose: Cerebral venous sinus thrombosis due to vaccine-induced im-mune thrombotic thrombocytopenia (CVST-VITT) is an adverse drug reaction occurring after severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2) vaccination. CVST-VITT patients often present with large intracerebral haemorrhages and a high proportion undergoes decompressive surgery. Clinical characteristics, therapeutic management and outcomes of CVST-VITT patients who underwent decompressive surgery are described and predictors of in- hospital mortality in these patients are explored.Methods: Data from an ongoing international registry of patients who developed CVST within 28 days of SARS-CoV- 2 vaccination, reported between 29 March 2021 and 10 May 2022, were used. Definite, probable and possible VITT cases, as defined by Pavord et al. (N Engl J Med 2021; 385: 1680–1689), were included. Results: Decompressive surgery was performed in 34/128 (27%) patients with CVST- VITT. In- hospital mortality was 22/34 (65%) in the surgical and 27/94 (29%) in the non- surgical group (p< 0.001). In all surgical cases, the cause of death was brain herniation. The highest mortality rates were found amongst patients with preoperative coma (17/18, 94% vs. 4/14, 29% in the non-comatose; p< 0.001) and bilaterally absent pupillary re-flexes (7/7, 100% vs. 6/9, 67% with unilaterally reactive pupil, and 4/11, 36% with bi-laterally reactive pupils; p= 0.023). Postoperative imaging revealed worsening of index haemorrhagic lesion in 19 (70%) patients and new haemorrhagic lesions in 16 (59%) pa-tients. At a median follow-up of 6 months, 8/10 of surgical CVST-VITT who survived ad-mission were functionally independent.Conclusions: Almost two-thirds of surgical CVST-VITT patients died during hospital ad-mission. Preoperative coma and bilateral absence of pupillary responses were associated with higher mortality rates. Survivors often achieved functional independence.Peer reviewe

    Use of eHealth technologies to enable the implementation of musculoskeletal Models of Care: Evidence and practice

    Get PDF
    Musculoskeletal (MSK) conditions are the second leading cause of morbidity-related burden of disease globally. EHealth is a potentially critical factor that enables the implementation of accessible, sustainable and more integrated MSK models of care (MoCs). MoCs serve as a vehicle to drive evidence into policy and practice through changes at a health system, clinician and patient level. The use of eHealth to implement MoCs is intuitive, given the capacity to scale technologies to deliver system and economic efficiencies, to contribute to sustainability, to adapt to low-resource settings and to mitigate access and care disparities. We follow a practice-oriented approach to describing the ‘what’ and ‘how’ to harness eHealth in the implementation of MSK MoCs. We focus on the practical application of eHealth technologies across care settings to those MSK conditions contributing most substantially to the burden of disease, including osteoarthritis and inflammatory arthritis, skeletal fragility-associated conditions and persistent MSK pain

    Management of Cerebral Venous Thrombosis Due to Adenoviral COVID-19 Vaccination

    Get PDF
    Objective Cerebral venous thrombosis (CVT) caused by vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of adenovirus-based severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. These comprised immunomodulation, non-heparin anticoagulants, and avoidance of platelet transfusion. The aim of this study was to evaluate adherence to these recommendations and its association with mortality. Methods We used data from an international prospective registry of patients with CVT after the adenovirus-based SARS-CoV-2 vaccination. We analyzed possible, probable, or definite VITT-CVT cases included until January 18, 2022. Immunomodulation entailed administration of intravenous immunoglobulins and/or plasmapheresis. Results Ninety-nine patients with VITT-CVT from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11 of 24 (46%), and 28 of 37 (76%) of the patients diagnosed in March, April, and from May onward, respectively, were treated in-line with VITT recommendations (p < 0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 [32%] vs 29/55 [52%], adjusted odds ratio [OR] = 0.43, 95% confidence interval [CI] = 0.16-1.19). However, patients who received immunomodulation had lower mortality (19/65 [29%] vs 24/34 [70%], adjusted OR = 0.19, 95% CI = 0.06-0.58). Treatment with non-heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 [33%] vs 13/35 [37%], adjusted OR = 0.70, 95% CI = 0.24-2.04). Mortality was also not significantly influenced by platelet transfusion (17/27 [63%] vs 26/72 [36%], adjusted OR = 2.19, 95% CI = 0.74-6.54). Conclusions In patients with VITT-CVT, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT-CVT. ANN NEUROL 2022Peer reviewe

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF

    Direct oral anticoagulants for the treatment of cerebral venous thrombosis - a protocol of an international phase IV study

    No full text
    Introduction: Current guidelines recommend that patients with cerebral venous thrombosis (CVT) should be treated with vitamin K antagonists (VKAs) for 3-12 months. Direct oral anticoagulants (DOACs), however, are increasingly used in clinical practice. An exploratory randomized controlled trial including 120 patients with CVT suggested that the efficacy and safety profile of dabigatran (a DOAC) is similar to VKAs for the treatment of CVT, but large-scale prospective studies from a real-world setting are lacking.Methods: DOAC-CVT is an international, prospective, observational cohort study comparing DOACs to VKAs for the prevention of recurrent venous thrombotic events after acute CVT. Patients are eligible if they are 18 years or older, have a radiologically confirmed CVT, and have started oral anticoagulant treatment (DOAC or VKA) within 30 days of CVT diagnosis. Patients with an absolute contra-indication for DOACs, such as pregnancy or severe renal insufficiency, are excluded from the study. We aim to recruit at least 500 patients within a three-year recruitment period. The primary endpoint is a composite of recurrent venous thrombosis and major bleeding at 6 months of follow-up. We will calculate an adjusted odds ratio for the primary endpoint using propensity score inverse probability treatment weighting.Discussion: DOAC-CVT will provide real-world data on the comparative efficacy and safety of DOACs versus VKAs for the treatment of CVT.Peer reviewe
    corecore