23,508 research outputs found
Recommended from our members
A Generic Communications Module for Cooperative 3D Visualization and Modelling over the Internet: the Collaborative API
Cooperative three-dimensional visualization and modeling applications allow a distributed group of users to work together with a model they share. To implement this kind of applications the underlying communications system must provide reliable and ordered multicast of users interactions. Due to the high complexity that characterizes the models, network bandwidth requirements have limited their use to intranets or in a few cases to very high-speed Internet connections.
In this paper we present a communications module that solves this problem. The library exposed, which is called Collaborative API, supports the creation of very efficient cooperative 3D visualization and modeling applications by optimizing the use of the network resources.
The Collaborative API, implements a new communications architecture: the dynamic client/server. The communications module presented in this paper is illustrated by two examples of applications that use it to provide cooperative 3D visualization over the Internet
Further ALMA observations and detailed modeling of the Red Rectangle
We present new high-quality ALMA observations of the Red Rectangle (a well
known post-AGB object) in C17O J=6-5 and H13CN J=4-3 line emission and results
from a new reduction of already published 13CO J=3-2 data. A detailed model
fitting of all the molecular line data, including previous maps and single-dish
spectra, was performed using a sophisticated code. These observations and the
corresponding modeling allowed us to deepen the analysis of the nebular
properties. We also stress the uncertainties in the model fitting.
We confirm the presence of a rotating equatorial disk and an outflow, which
is mainly formed of gas leaving the disk. The mass of the disk is ~ 0.01 Mo,
and that of the CO-rich outflow is ~ 10 times smaller. High temperatures of ~
100 K are derived for most components. From comparison of the mass values, we
roughly estimate the lifetime of the rotating disk, which is found to be of
about 10000 yr. Taking data of a few other post-AGB composite nebulae into
account, we find that the lifetimes of disks around post-AGB stars typically
range between 5000 and more than 20000 yr. The angular momentum of the disk is
found to be high, ~ 9 Mo AU km/s, which is comparable to that of the stellar
system at present. Our observations of H13CN show a particularly wide velocity
dispersion and indicate that this molecule is only abundant in the inner
Keplerian disk, at ~ 60 AU from the stellar system. We suggest that HCN is
formed in a dense photodissociation region (PDR) due to the UV excess known to
be produced by the stellar system, following chemical mechanisms that are well
established for interstellar medium PDRs and disks orbiting young stars. We
further suggest that this UV excess could lead to the efficient formation and
excitation of PAHs and other C-bearing macromolecules, whose emission is very
intense in the optical counterpart.Comment: Astronomy & Astrohysics, in press; 17 pages, 18 figures, 1 tabl
L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling.
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM
Sensor-Based Seeds for a Chaotic Stream Cipher
In this paper we have used a surface micromachined capacitive accelerometer in order to generate seeds that are suitable for secure communications between wireless smart sensors for IoT networks. These seeds have then been used in a chaotic stream cipher based on a Modified Logistic Map and a Linear Feedback Shift Register. The sequences generated by the chaotic stream cipher have been subjected to the randomness NIST tests. All the tests have been passed, proving that the proposed approach could be used for secure communications
Ideal extensions of free commutative monoids
We introduce a new family of monoids, which we call gap absorbing monoids.
Every gap absorbing monoid is an ideal extension of a free commutative monoid.
For a gap absorbing monoid we study its set of atoms and Betti elements,
which allows us to show that the catenary degree of is at most four and
that the set of lengths of any element in is an interval. We also give
bounds for the -primality of any ideal extension of a free commutative
monoid. For ideal extensions of , with a positive
integer, we show that is finite if and only if has finitely
many gaps
Constructions of the soluble potentials for the non-relativistic quantum system by means of the Heun functions
The Schr\"{o}dinger equation where
is rewritten as a more popular form of a second order
differential equation through taking a similarity transformation
with . The Schr\"{o}dinger invariant
can be calculated directly by the Schwarzian derivative and the
invariant of the differential equation . We
find an important relation for moving particle as and thus
explain the reason why the Schr\"{o}dinger invariant keeps constant.
As an illustration, we take the typical Heun differential equation as an object
to construct a class of soluble potentials and generalize the previous results
through choosing different as before. We get a more general
solution through integrating
directly and it includes all
possibilities for those parameters. Some particular cases are discussed in
detail.Comment: 11 page
ALMA observations of the Red Rectangle, a preliminary analysis
We aim to study equatorial disks in rotation and axial outflows in post-AGB
objects, as to disclose the formation and shaping mechanisms in planetary
nebulae. So far, both disks and outflows had not been observed simultaneously.
We have obtained high-quality ALMA observations of 12CO and 13CO J=3-2 and
12CO J=6-5 line emission in the Red Rectangle, the only post-AGB/protoplanetary
object in which a disk in rotation has been mapped up to date.
These observations provide an unprecedented description of the complex
structure of this source. Together with an equatorial disk in rotation, we find
a low-velocity outflow that occupies more or less the region placed between the
disk and the optical X-shaped nebula. From our observations and preliminary
modeling of the data, we confirm the previously known properties of the disk
and obtain a first description of the structure, dynamics, and physical
conditions of the outflow.Comment: 5 pages, 5 figure
- …