37,202 research outputs found

    osp(1|2) Conformal Field Theory

    Full text link
    We review some results recently obtained for the conformal field theories based on the affine Lie superalgebra osp(1|2). In particular, we study the representation theory of the osp(1|2) current algebras and their character formulas. By means of a free field representation of the conformal blocks, we obtain the structure constants and the fusion rules of the model. (Lecture delivered at the CERN-Santiago de Compostela-La Plata Meeting, "Trends in Theoretical Physics", La Plata, Argentina, April-May 1997).Comment: 16 pages, 1 figure, LaTe

    Observation of Ag Nanoparticles in/on Ag@MIL-100(Fe) Prepared Through Different Procedures

    Get PDF
    Loading of active metals, metal clusters, and/or metal nanoparticles in Metal Organic Frameworks (MOFs) is an emergent field with applications in sensors, catalysis, medicine, and even in the polymeric industry. In the present work, MIL-100(Fe) has been synthesized and reacted with AgNO3 through liquid and incipient wetness, and also through solid-state reaction or solid grinding. The aim of this study is to evaluate whether the MIL-100 would uptake metal particles using a similar principle as that of the ion exchange in zeolites, or else, their inherent humidity would favor the “dissolution” of the metal salt, thus yielding very small metal particles. The immobilization of Ag nanoparticles inside the MOF pores was identified by Cs-corrected scanning transmission electron microscopy (Cs-corrected STEM) techniques

    Impact hazard protection efficiency by a small kinetic impactor

    Get PDF
    In this paper the ability of a small kinetic impactor spacecraft to mitigate an Earth-threatening asteroid is assessed by means of a novel measure of efficiency. This measure estimates the probability of a space system to deflect a single randomly-generated Earth-impacting object to a safe distance from the Earth. This represents a measure of efficiency that is not biased by the orbital parameters of a test-case object. A vast number of virtual Earth-impacting scenarios are investigated by homogenously distributing in orbital space a grid of 17,518 Earth impacting trajectories. The relative frequency of each trajectory is estimated by means Opik’s theory and Bottke’s near Earth objects model. A design of the entire mitigation mission is performed and the largest deflected asteroid computed for each impacting trajectory. The minimum detectable asteroid can also be estimated by an asteroid survey model. The results show that current technology would likely suffice against discovered airburst and local damage threats, whereas larger space systems would be necessary to reliably tackle impact hazard from larger threats. For example, it is shown that only 1,000 kg kinetic impactor would suffice to mitigate the impact threat of 27.1% of objects posing similar threat than that posed by Apophis

    Observational constraints to boxy/peanut bulge formation time

    Get PDF
    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this letter is determining if the mass assembly of the different components leaves an imprint in their stellar populations allowing to estimate the time of bar formation and its evolution. To this aim we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis shows clearly different SADs for the different bar areas. There is an underlying old (>=12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyrs with a deficit of younger populations. The outer bar region presents a SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.Comment: Accepted for publication in MNRAS Letter

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure
    • …
    corecore