978 research outputs found
Hybrid Intelligent Inverse Optimal Control forMethane Production in an Anaerobic Process
Anaerobic processes are very attractive because of their waste treatment properties and their capacity for transforming waste materials in order to generate methane, which can be used as a renewable energy source. A hybrid intelligent control strategy for an anaerobic process is proposed in this work; the structure of this strategy is as follows: a) a control law calculates dilution rate and bicarbonate addition in order to track a methaneproduction reference trajectory; this control law is based on speed-gradient inverse optimalneural control, b) a nonlinear discrete-time recurrent high-order neural observer isused to estimate biomass concentration, substrate degradation and inorganic carbon, and
c) a Takagi-Sugeno supervisor, which detects the process state, selects and applies themost adequate control action, allowing a smooth switching between open loop and closed loop. The applicability of the proposed scheme is illustrated via simulations consideringa completely stirred tank reactor
Near-term deployment of carbon capture and sequestration from biorefineries in the United States
Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under 60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States
Thermal performance characteristics of a tessellated-impinging central receiver
Current central receiver Concentrating Solar Power plants using molten salt as a heat transfer fluid add heat at around 565 °C in a power plant. Adding heat at a higher temperature can improve the thermodynamic performance and may reduce the cost of power. One way to achieve this is by using pressurized air solar receivers. Current receivers have achieved thermal efficiencies of around 80% at an outlet temperature of 800 °C. This paper investigates a novel central receiver technology that makes use of a tessellated array of heat transfer units. The units employ impingement heat transfer within a concave surface. The receiver can be scaled for a desired thermal rating by the number of heat transfer units. The convolution-projection flux modelling approach is used to model and project an incoming flux distribution on the receiver’s surface. This flux distribution is interpreted by a Computational Fluid Dynamics model as a volumetric heat source. Radiative and convective heat losses are considered. An initial performance outlook estimates that an outlet temperature of 801 °C can be reached at a thermal efficiency of 59% and an exterior surface temperature of 1142 °C for an aperture flux of 635 kW/m2. A limitation is an insufficient exterior surface area to absorb the incoming flux which causes a high surface temperature and thermal losses. Similar thermal performance is estimated at high and low pressures, with increased pumping losses at low pressures. The efficiency may be improved by taking advantage of a larger surface area relative to the aperture area.An Erasmus+ mobility grant awarded by Alliance4Universities which made a collaboration at UC3M possible.http://www.elsevier.com/locate/atehj2023Mechanical and Aeronautical Engineerin
Tackling transition:the value of peer mentoring
This paper is aimed at those interested in the promotion of student retention in higher education; particularly those with an interest in peer mentoring as a means of student support. It critically discusses the results of an exploratory study analysing the perceptions of peer mentors and mentees within five universities in the United Kingdom. The aim of the study was to analyse how student peer mentoring can aid transition into university by focusing specifically on how senior students can support their junior counterparts in their first year at university. The paper discusses the results of a survey which was completed by 329 student peer mentors and mentees. Focusing on the benefits and outcomes of participation in Mentoring Programmes, the survey was distinctive in that it asked mentors and mentees similar questions. From a theoretical perspective, the paper contributes to debates about peer support in higher education showing that participation in such programmes can have positive outcomes from both social and pedagogic perspectives. Practically speaking, the results have important implications for Higher Education Institutions as the research highlights the importance of putting into place formally structured Peer Mentoring Programmes which facilitate student support at a time when new students are most at risk of ‘dropping out’
Fundamental considerations for the finite element analysis of shell structures
International audienceThe objective in this paper is to present fundamental considerations regarding the finite element analysis of shell structures. First, we review some well-known results regarding the asymptotic behaviour of a shell mathematical model. When the thickness becomes small, the shell behaviour falls into one of two dramatically different categories; namely, the membrane-dominated and bending-dominated cases. The shell geometry and boundary conditions decide into which category the shell structure falls, and a seemingly small change in these conditions can result into a change of category and hence into a dramatically different shell behaviour. An effective finite element scheme should be applicable to both categories of shell behaviour and the rate of convergence in either case should be optimal and independent of the shell thickness. Such a finite element scheme is difficult to achieve but it is important that existing procedures be analyzed and measured with due regard to these considerations. To this end, we present theoretical considerations and we propose appropriate shell analysis test cases for numerical evaluations
Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions
Previous and present "academic" research aiming at atomic scale understanding
is mainly concerned with the study of individual molecular processes possibly
underlying materials science applications. Appealing properties of an
individual process are then frequently discussed in terms of their direct
importance for the envisioned material function, or reciprocally, the function
of materials is somehow believed to be understandable by essentially one
prominent elementary process only. What is often overlooked in this approach is
that in macroscopic systems of technological relevance typically a large number
of distinct atomic scale processes take place. Which of them are decisive for
observable system properties and functions is then not only determined by the
detailed individual properties of each process alone, but in many, if not most
cases also the interplay of all processes, i.e. how they act together, plays a
crucial role. For a "predictive materials science modeling with microscopic
understanding", a description that treats the statistical interplay of a large
number of microscopically well-described elementary processes must therefore be
applied. Modern electronic structure theory methods such as DFT have become a
standard tool for the accurate description of individual molecular processes.
Here, we discuss the present status of emerging methodologies which attempt to
achieve a (hopefully seamless) match of DFT with concepts from statistical
mechanics or thermodynamics, in order to also address the interplay of the
various molecular processes. The new quality of, and the novel insights that
can be gained by, such techniques is illustrated by how they allow the
description of crystal surfaces in contact with realistic gas-phase
environments.Comment: 24 pages including 17 figures, related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
The impact of using BARCIST 1.0 criteria on quantification of BAT volume and activity in three independent cohorts of adults
Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas
Integrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them were frequently silenced by epigenetic mechanisms. Notably, the pattern of genetic and epigenetic inactivation differed among B-NHL subtypes. Thus, the P53-inducible PIG7/LITAF was silenced by homozygous deletion in primary mediastinal B-cell lymphoma and by promoter hypermethylation in germinal center lymphoma, the proapoptotic BIM gene presented homozygous deletion in mantle cell lymphoma and promoter hypermethylation in Burkitt lymphoma, the proapoptotic BH3-only NOXA was mutated and preferentially silenced in diffuse large B-cell lymphoma, and INK4c/P18 was silenced by biallelic mutation in mantle-cell lymphoma. Our microarray strategy has identified novel candidate tumor suppressor genes inactivated by genetic and epigenetic mechanisms that substantially vary among the B-NHL subtypes
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
- …