7,019 research outputs found
Revisiting the anatomy of the left ventricle in the light of knowledge of its development
\ua9 2024 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.Despite centuries of investigation, certain aspects of left ventricular anatomy remain either controversial or uncertain. We make no claims to have resolved these issues, but our review, based on our current knowledge of development, hopefully identifies the issues requiring further investigation. When first formed, the left ventricle had only inlet and apical components. With the expansion of the atrioventricular canal, the developing ventricle cedes part of its inlet to the right ventricle whilst retaining the larger parts of the cushions dividing the atrioventricular canal. Further remodelling of the interventricular communication provides the ventricle with its outlet, with the aortic root being transferred to the left ventricle along with the newly formed myocardium supporting its leaflets. The definitive ventricle possesses inlet, apical and outlet parts. The inlet component is guarded by the mitral valve, with its leaflets, in the normal heart, supported by papillary muscles located infero-septally and supero-laterally. There is but a solitary zone of apposition between the leaflets, which we suggest are best described as being aortic and mural. The trabeculated component extends beyond the inlet to the apex and is confluent with the outlet part, which supports the aortic root. The leaflets of the aortic valve are supported in semilunar fashion within the root, with the ventricular cavity extending to the sinutubular junction. The myocardial-arterial junction, however, stops well short of the sinutubular junction, with myocardium found only at the bases of the sinuses, giving rise to the coronary arteries. We argue that the relationships between the various components should now be described using attitudinally appropriate terms rather than describing them as if the heart is removed from the body and positioned on its apex
The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor
Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin-protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.Spanish Ministerio de Ciencia e Innovacion [CGL2010-20748-CO2-01, CGL2013-48247-P, FIS2013-48444-C2-2-P]; Andalusian Consejeria de Innovacion Ciencia y Tecnologia [RNM6433]; (Sepiatech, PROMAR program) of the Portuguese Ministerio da Agricultura e do Mar, Portugal [31.03.05.FEP.002]; Junta de Andalucia [RNM363]; FP7 COST Action of the European Community. [TD0903]info:eu-repo/semantics/publishedVersio
Bone growth during rapamycin therapy in young rats
<p>Abstract</p> <p>Background</p> <p>Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties.</p> <p>Methods</p> <p>Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I) were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption.</p> <p>Results</p> <p>At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by <it>histone-4 </it>and <it>mammalian target of rapamycin </it>(<it>mTOR</it>) expression. A reduction in <it>parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) </it>and an increase in <it>Indian hedgehog </it>(<it>Ihh</it>) expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the <it>receptor activator of nuclear factor kappa ÎČ ligand </it>(<it>RANKL</it>) and <it>vascular endothelial growth factor </it>(<it>VEGF</it>) expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks.</p> <p>Conclusion</p> <p>When given to young rats, 2 weeks of rapamycin significantly decreased endochondral bone growth. No catch-up growth was demonstrated at the end of 4 weeks, although markers of chondrocyte proliferation and differentiation improved. Clinical studies need to be done to evaluate these changes in growing children.</p
ESA F-Class Comet Interceptor: Trajectory design to intercept a yet-to-be-discovered comet
Comet Interceptor (Comet-I) was selected in June 2019 as the first ESA F-Class mission. In 2029+, Comet-I will hitch a ride to a Sun-Earth L2 quasi-halo orbit, as a co-passenger of ESA's M4 ARIEL mission. It will then remain idle at the L2 point until the right departure conditions are met to intercept a yet-to-be-discovered long period comet (or interstellar body). The fact that Comet-I target is thus unidentified becomes a key aspect of the trajectory and mission design. The paper first analyses the long period comet population and concludes that 2 to 3 feasible targets a year should be expected. Yet, Comet-I will only be able to access some of these, depending mostly on the angular distance between the Earth and the closest nodal point to the Earth's orbit radius. A preliminary analysis of the transfer trajectories has been performed to assess the trade-off between the accessible region and the transfer time for a given spacecraft design, including a fully chemical, a fully electric and a hybrid propulsion system. The different Earth escape options also play a paramount role to enhance Comet-I capability to reach possible long period comet targets. Particularly, Earth-leading intercept configurations have the potential to benefit the most from lunar swing-by departures. Finally, a preliminary Monte Carlo analysis shows that Comet-I has a 95â99% likelihood of successfully visit a pristine newly-discovered long period comet in less than 6 years of mission timespan
New Hope for a âCursedâ Crop? Understanding Stakeholder Attitudes to Plant Molecular Farming With Modified Tobacco in Europe
Plant molecular farming (PMF) with tobacco could provide a sustainable and cheap platform for the production of high-value proteins for medical use. It could also offer European tobacco farmers an alternative, healthful end use for their crop. New plant breeding techniques (NPBTs) offer a means of quickly and precisely optimizing molecular farming platforms for this purpose. However, there has been little empirical research focussing on the barriers and facilitators of these technologies in the agricultural sphere. Here, we explore key stakeholder perceptions toward this combination of technologies, exploring their understanding of risk and opportunity. We interviewed N = 24 key stakeholders â tobacco farmers, agronomists, policymakers, and researchers â in three tobacco-growing areas of Spain and Italy. Our findings demonstrate these stakeholders have a favorable attitude toward PMF with tobacco due to its beneficial medical purpose and the opportunity it provides farmers to continue growing tobacco in a declining European market. Tobacco producers also reported favorable views toward NPBTs, though for some this was contingent on their use for non-food crops like tobacco. Most stakeholdersâ concerns are economic in nature, such as potential profitability and demands for new agronomic practices or infrastructure. Tobacco producer associations were thought to be important facilitators for future PMF scale-up. The attitude toward these technologies by smoking tobacco companies is, however, unknown and constitutes a potential risk to the development of PMF
Sliding charge density wave in manganites
The so-called stripe phase of the manganites is an important example of the
complex behaviour of metal oxides, and has long been interpreted as the
localisation of charge at atomic sites. Here, we demonstrate via resistance
measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a
prototypical charge density wave (CDW) which undergoes collective transport.
Dramatic resistance hysteresis effects and broadband noise properties are
observed, both of which are typical of sliding CDW systems. Moreover, the high
levels of disorder typical of manganites result in behaviour similar to that of
well-known disordered CDW materials. Our discovery that the manganite
superstructure is a CDW shows that unusual transport and structural properties
do not require exotic physics, but can emerge when a well-understood phase (the
CDW) coexists with disorder.Comment: 13 pages; 4 figure
Molecular motors robustly drive active gels to a critically connected state
Living systems often exhibit internal driving: active, molecular processes
drive nonequilibrium phenomena such as metabolism or migration. Active gels
constitute a fascinating class of internally driven matter, where molecular
motors exert localized stresses inside polymer networks. There is evidence that
network crosslinking is required to allow motors to induce macroscopic
contraction. Yet a quantitative understanding of how network connectivity
enables contraction is lacking. Here we show experimentally that myosin motors
contract crosslinked actin polymer networks to clusters with a scale-free size
distribution. This critical behavior occurs over an unexpectedly broad range of
crosslink concentrations. To understand this robustness, we develop a
quantitative model of contractile networks that takes into account network
restructuring: motors reduce connectivity by forcing crosslinks to unbind.
Paradoxically, to coordinate global contractions, motor activity should be low.
Otherwise, motors drive initially well-connected networks to a critical state
where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages,
8 figure
Group formation under limited resources: narrow basin of equality
The formation of groups in competition and the aggressive interactions between them are ubiquitous phenomena in society. These include student activities in the classroom, election races between political parties, and intensifying trade wars between countries. Why do individuals form themselves into groups? What is the optimal size of groups? And how does the group size distribution affect resource allocations? These questions have been the subjects of intense research in economics, political science, sociology, and ethology. In this study, we explore the group-size effects on the formation of groups and resource allocations from an economic standpoint. While being in a large group is generally advantageous in competition, an increase in the management costs would set an upper bound to the individual benefit of members. Under such counteracting size effects, we consider the dynamics of group formation in which people seek a conservative measure to reduce their possible maximum loss. We are especially interested in the effects of group size on social inequalities at both group and individual level in resource allocation. Our findings show that the low positive size-effect and the high negative size-effect result in different types of social inequalities. We conclude, from the relation between the inequality measures and group distributions predicted within the model, that overall social equality only can be achieved within a narrow region where two counteracting size-effects are balanced
- âŠ