14 research outputs found

    Immobilization of Photoelectric Dye on the Polyethylene FilmSurface

    Get PDF
    PE film was treated with fuming nitric acid at 80℃ for 20 min, resulting in introduction of COOH moieties on the film surface. The COOH’s were reacted with ethylenediamine, whose amino groups were used for linking with (2-[4-(dibutylamino)phenyl]ethenyl)-3-carboxy-methylbenzo-thiazolium, photoelectric dye (NK-5962), which absorbs visible light and converts the photon energy to electric potentials. The dye molecules were immobilized on the PE film surface and they were able to stimulate chick retinal tissues on incidence of visible light. These facts hopefully lead to development of an artificial retinal prosthesis

    Genome Sequence of a Mesophilic Hydrogenotrophic Methanogen Methanocella paludicola, the First Cultivated Representative of the Order Methanocellales

    Get PDF
    We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-IMRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-IMRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-IMRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens

    2. Antiphospholipid Syndrome

    No full text

    Sequestration and efflux largely account for cadmium and copper resistance in the deep‐sea Nitratiruptor sp. SB155‐2 (phylum Campylobacterota)

    Get PDF
    In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments
    corecore