2 research outputs found

    Mini-TCRs: Truncated T cell receptors to generate T cells from induced pluripotent stem cells

    Get PDF
    Allogeneic T cell platforms utilizing induced pluripotent stem cell (iPSC) technology exhibit significant promise for the facilitation of adoptive immunotherapies. While mature T cell receptor (TCR) signaling plays a crucial role in generating T cells from iPSCs, the introduction of exogenous mature TCR genes carries a potential risk of causing graft-versus-host disease (GvHD). In this study, we present the development of truncated TCRα and TCRβ chains, termed mini-TCRs, which lack variable domains responsible for recognizing human leukocyte antigen (HLA)-peptide complexes. We successfully induced cytotoxic T lymphocytes (CTLs) from iPSCs by employing mini-TCRs. Combinations of TCRα and TCRβ fragments were screened from mini-TCR libraries based on the surface localization of CD3 proteins and their ability to transduce T cell signaling. Consequently, mini-TCR-expressing iPSCs underwent physiological T cell development, progressing from the CD4 and CD8 double-positive stage to the CD8 single-positive stage. The resulting iPSC-derived CTLs exhibited comparable cytokine production and cytotoxicity in comparison to that of full-length TCR-expressing T lymphocytes when chimeric antigen receptors (CARs) were expressed. These findings demonstrate the potential of mini-TCR-carrying iPSCs as a versatile platform for CAR T cell therapy, offering a promising avenue for advancing adoptive immunotherapies

    Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA

    Get PDF
    Highly active antiretroviral therapy (HAART) has markedly prolonged the prognosis of HIV-1 patients. However, lifelong dependency on HAART is a continuing challenge, and an effective therapeutic is much desired. Recently, introduction of short hairpin RNA (shRNA) targeting the HIV-1 promoter was found to suppress HIV-1 replication via transcriptional gene silencing (TGS). The technology is expected to be applied with hemato-lymphopoietic cell transplantation of HIV patients to suppress HIV transcription in transplanted hemato-lymphopoietic cells. Combination of the TGS technology with new cell transplantation strategy with induced pluripotent stem cell (iPSC)-derived hemato-lymphopoietic cells might contribute to new gene therapy in the HIV field. In this study, we evaluated iPSC-derived macrophage functions and feasibility of TGS technology in macrophages. Human iPSCs were transduced with shRNAs targeting the HIV-1 promoter region (shPromA) by using a lentiviral vector. The shPromA-transfected iPSCs were successfully differentiated into functional macrophages, and they exhibited strong protection against HIV-1 replication with alteration in the histone structure of the HIV-1 promoter region to induce heterochromatin formation. These results indicated that iPS-derived macrophage is a useful tool to investigate HIV infection and protection, and that the TGS technology targeting the HIV promoter is a potential candidate of new gene therapy. Keywords: HIV-1, induced pluripotent stem cells, transcriptional-gene-silencing, siRNA, NF-κB, macrophag
    corecore