985 research outputs found

    Realization of Strong Coupling Fixed Point in Multilevel Kondo Models

    Full text link
    Impurity four- and six-level Kondo model, in which an ion is tunneling among four- and six-stable points and interacting with surrounding conduction electrons, are investigated by using the perturbative and numerical renormalization group methods. It is shown that purely orbital Kondo effects occur at low temperatures in these systems which are direct generalizations of the Kondo effect in the so-called two-level system. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs_4Sb_12 and some other filled-skutterudites.Comment: 3 pages, 3 figures, for proceedings of ASR-WYP-2005. To be published in Journal of Physical Society Japan supplemen

    Increased Levels of Circulating and Tissue mRNAs of Oct-4, Sox-2, Bmi-1 and Nanog is ESCC Patients: Potential Tool for Minimally Invasive Cancer Diagnosis

    Get PDF
    Background Early stages of esophageal cancer lack a specific symptom, a reliable biomarker and accurate non-invasive diagnostic modalities prompting the pressing need for identification of a marker for early diagnosis of this disease. Methods In the present study we investigated the levels of circulating and tissue mRNAs of Oct-3/4, Sox-2, Nanog and Bmi-1 in esophageal cancer patients using Reverse-Transcription Polymerase Chain Reaction (RT-PCR) with the aim of evaluating their potential as minimally invasive diagnostic markers. Result Increased transcript levels of Oct-4, Sox-2, Bmi-1 and Nanog were detected in (92%), (95%), (75%) and (67%) of the esophageal cancer tissues, respectively as compared with the matched distant normals. Conclusion Interestingly, most of the preneoplastic tissues exhibited increased transcript levels of these stemness markers suggesting their role in early stages of esophageal tumorigenesis. Furthermore, the detection of elevated levels of circulating mRNAs of Oct-4 and Nanog in sera of esophageal cancer patients emphasizes their potential as minimally invasive diagnostic markers for esophageal cancer

    Broadband ferromagnetic resonance of Ni81Fe19 wires using a rectifying effect

    Full text link
    The broadband ferromagnetic resonance measurement using the rectifying effect of Ni81Fe19 wire has been investigated. One wire is deposited on the center strip line of the coplanar waveguide (CPW) and the other one deposited between two strip lines of CPW. The method is based on the detection of the magnetoresistance oscillation due to the magnetization dynamics induced by the radio frequency field. The magnetic field dependences of the resonance frequency and the rectification spectrum are presented and analytically interpreted on the standpoint of a uniform magnetization precession model.Comment: 33pages, 8 figures. submitte
    corecore