768 research outputs found
Universality in heavy-fermion systems with general degeneracy
We discuss the relation between the T^{2}-coefficient of electrical
resistivity and the T-linear specific-heat coefficient for
heavy-fermion systems with general , where is the degeneracy of
quasi-particles. A set of experimental data reveals that the Kadowaki-Woods
relation; , collapses
remarkably for large-N systems, although this relation has been regarded to be
commonly applicable to the Fermi-liquids. Instead, based on the Fermi-liquid
theory we propose a new relation;
with and .
This new relation exhibits an excellent agreement with the data for whole the
range of degenerate heavy-fermions.Comment: 2 figures, to appear in Phys. Rev. Let
Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity
We investigate how Kondo phenomenon occurs in the Anderson model dynamically
coupled with local Jahn-Teller phonons. It is found that the total angular
moment composed of electron pseudo-spin and phonon angular moments is screened
by conduction electrons. Namely, phonon degrees of freedom essentially
contribute to the formation of singlet ground state. A characteristic
temperature of the Kondo effect due to dynamical Jahn-Teller phonons is
explained by an effective - Hamiltonian with anisotropic exchange
interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic
region.Comment: 5 pages, 3 figure
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells
We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (PPL) with and without magnetic field is studied. ThePPLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,PPLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field
Full coherent control of nuclear spins in an optically pumped single quantum dot
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce
effective magnetic (Overhauser) fields of up to several Tesla acting on the
electron spin or up to a few hundred mT for the hole spin. Recently this has
been recognized as a resource for intrinsic control of QD-based spin quantum
bits. However, only static long-lived Overhauser fields could be used. Here we
demonstrate fast redirection on the microsecond time-scale of Overhauser fields
of the order of 0.5 T experienced by a single electron spin in an optically
pumped GaAs quantum dot. This has been achieved using full coherent control of
an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of
short radio-frequency (rf) pulses. These results open the way to a new class of
experiments using rf techniques to achieve highly-correlated nuclear spins in
quantum dots, such as adiabatic demagnetization in the rotating frame leading
to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin
squeezing
Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential
To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction
electrons, a generalized Anderson model is derived. The model includes a new
channel of hybridization associated with phonon emission or absorption. In the
simplest case of the localized electron orbital with the s-wave symmetry,
hybridization with p-waves becomes possible. Interesting interplay among the
conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type
Kondo effect is found and the ground state phase diagram is determined by using
the numerical renormalization group method. Two different types of stable fixed
points are identified and the two-channel Kondo fixed points are generically
realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be
publishe
Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis
To understand the hemodynamics of hepatocellular carcinoma (HCC) is important for the precise imaging diagnosis and treatment, because there is an intense correlation between their hemodynamics and pathophysiology. Angiogenesis such as sinusoidal capillarization and unpaired arteries shows gradual increase during multi-step hepatocarcinogenesis from high-grade dysplastic nodule to classic hypervascular HCC. In accordance with this angiogenesis, the intranodular portal supply is decreased, whereas the intranodular arterial supply is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of malignancy of the nodules. On the other hand, the main drainage vessels of hepatocellular nodules change from hepatic veins to hepatic sinusoids and then to portal veins during multi-step hepatocarcinogenesis, mainly due to disappearance of the hepatic veins from the nodules. Therefore, in early HCC, no perinodular corona enhancement is seen on portal to equilibrium phase CT, but it is definite in hypervascular classical HCC. Corona enhancement is thicker in encapsulated HCC and thin in HCC without pseudocapsule. To understand these hemodynamic changes during multi-step hepatocarcinogenesis is important, especially for early diagnosis and treatment of HCCs
- …