13,930 research outputs found

    Influence of choked angle of bearing channel on profile grain structure during multi-hole extrusion of aluminum alloy

    Get PDF
    Direct extrusion of aluminum alloy EN AW-6060 was carried out applying a four-hole die with pair-wise parallel and choked long channels. Due to the dissimilar friction inside parallel and choked channels profiles with different length were extruded simultaneously. In order to investigate the grain structure evolution along the whole extrusion process, multiple sections from the beginning to the end of the products were analyzed. Macroetch tests revealed unrecrystallized fibrous, fully recrystallized as well as partially recrystallized grains. The results also showed an axial and radial grain structure variation. At the beginning of the extrudates unrecrystallized fibrous microstructure was observed, while a fully recrystallized structure characterized the end of the products. Additionally, finer grains were present at the surface, whereas coarser grains were found in the center of the extrudates. Finally, numerical simulations allowed estimating the temperature, strain and strain rate evolution along the whole product length. Thus, a correlation between the extrusion parameters, deformation conditions and the grain structure was obtained

    Influence of temperature and sliding speed on the subsurface microstructure evolution of EN AW-6060 under sticking friction conditions

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1896, 140012 (2017) and may be found at https://doi.org/10.1063/1.5008168.The microstructure evolution of the friction boundary layer of the aluminum alloy EN AW-6060 was investigated. Sticking friction tests at different temperatures and sliding speeds were carried out. A severe deformation below the friction surface was observed by means of LOM and EBSD mapping. Thus, the thickness variation and the grain structure of the high deformation zone could be described. Fibrous structure was observed at 300 °C and 400 °C, while equiaxed grains with high misorientation angle (>15°) were generated at higher temperatures. Additionally, abnormal grain growth and coarse grains were detected at high sliding speeds (10 mm/s, 42 mm/s) at 450°C and 500 °C respectively

    Application of Friction Shear Test for Constitutive Modeling Evaluation of Magnesium Alloy AZ31B at high Temperature

    Get PDF
    The experimental determination of the flow stress and its mathematical formulation are essential for the numerical simulation of metal forming processes. The hot compression test is widely used to analyze the flow stress evolution as function of temperature, strain and strain rate. The compression test is limited to a relative low strain (ε≤1) which is acceptable when the stress is minor influenced at higher strains. In the case of magnesium alloys the flow stress is strongly influenced by the strain even at high strain (ε>1). In this work the thermo-mechanical behavior of the magnesium alloy AZ31B was investigated to improve the constitutive modeling up to high strains. Experimental stress-strain curves obtained from hot compression tests at different temperatures (450 °C-550 °C) and strain rates (0.01 1/s – 10 1/s) were applied to construct conventional material models such as those proposed by Garofalo (Zener-Hollomon) and Hensel-Spittel. In addition, shear tests under sticking friction conditions were carried out at high temperature (400 °C-500 °C) and different shear speeds (0.1 mm/s - 10 mm/s). During this test, the thin contact subsurface of cylindrical specimens experiences a high plastic shear deformation, while the axial force and stroke are simultaneously measured. Furthermore, a new constitutive modeling approach was proposed, which combine the Zener-Hollomon model and the experimental result of the friction shear test to estimate the flow stress at low and high strain respectively. Numerical simulations of the friction shear test applying the conventional models as well as the new constitutive formulation are presented in this study
    • …
    corecore