44 research outputs found
Advances in Treatment of Hepatitis C
Hepatitis C infection (HCV) is a major cause of chronic hepatitis and cirrhosis worldwide. Interferon-based regimen has been the sole therapy to eradicate HCV infection for decades. However, this interferon and ribavirin combination is associated with several serious adverse events and the sustained virologic response rate was suboptimal. The recent discovery of oral direct-acting antiviral agents (DAAs) heralded a revolution in the treatment of chronic HCV. This breakthrough in HCV resulted in high rates of HCV eradication with sustained virologic response rates ranging between 90 and 100% across different genotypes. New therapies were administered orally for 12 or 24 months and this resulted in better compliance and few adverse events. DAAs are categorized into four major groups namely: NS5B nucleotide inhibitors, NS5B nonnucleoside inhibitors, NS5A replication complex inhibitors, and NS3/4A protease inhibitors (PI). Several interferon-free regimens have been approved and adequately assessed and several new regimens with high potencies, less cross-resistance, and better safety profile are in the process of approval. Thus, the era of HCV eradication and cure has begun
Viral Hepatitis A to E in South Mediterranean Countries
Viral hepatitis represents an important health problem in the South Mediterranean countries, Egypt, Libya, Tunisia, Algeria and Morocco. Emerging natural history and epidemiological information reveal differences in the overall epidemiology, risk factors and modes of transmission of viral hepatitis A, B, C, D, E infections in the South Mediterranean region. The differences in the in incidence and prevalence of viral hepatitis across North African countries is attributed to variations in health care and sanitation standards, risk factors and immunization strategies. The active continuous population movement through travel, tourism and migration from and to the South Mediterranean countries contribute to the spread of infections due to hepatitis viruses across borders leading to outbreaks and emergence of new patterns of infection or introduction of uncommon genotypes in other countries, particularly in Europe
Therapeutic role of MSCs-derived exosomes for Alzheimer's disease
The discovery of mesenchymal stem cell-derived exosomes (MSCs-derived exosomes) has shed a new light in the development of disease-modifying treatments for Alzheimer (AD). The present study is an attempt to investigate the influence of these extracellular vesicles (exosomes) in Alz therapy. A total of 38 adult female albino Wistar rats were randomly assigned to the following groups: Control group (C) of 8 rats given saline; Alzheimer’s group (Alz) of 15 ovariectomized animals inoculated orally with AlCl3 (17mg/Kg b.wt/day) for 2 months after 6 weeks of surgical operation and 15 Alzheimer’s disease-induced rats treated (i.v) with (107 MSCs-derived exosomes/rat/week). After 2 and 4 weeks animals were sacrificed by ether inhalation anesthesia where brains were removed and processed for histological investigation by Hx&E and biochemical analysis for measuring β-Amyloid 1-42 and Brain derived neurotrophic factor (BDNF) levels
Specific Cellular Immune Response and Cytokine Patterns in Patients Coinfected with Hepatitis C Virus and Schistosoma mansoni
Patients coinfected with hepatitis C virus (HCV) and Schistosoma mansoni show high incidence of viral persistence and accelerated fibrosis. To determine whether immunological mechanisms are responsible for this alteration in the natural history of HCV, the HCV-specific peripheral CD4+ T cell responses and cytokines were analyzed in patients with chronic hepatitis C monoinfection, S. mansoni monoinfection, or HCV and S. mansoni coinfection. An HCV-specific CD4+ proliferative response to at least 1 HCV antigen was detected in 73.3% of patients infected with HCV, compared with 8.6% of patients coinfected with HCV and S. mansoni. Stimulation with HCV antigens produced a type 1 cytokine profile in patients infected with HCV alone, compared with a type 2 predominance in patients coinfected with HCV and S. mansoni. In contrast, there was no difference in response to schistosomal antigens in patients infected with S. mansoni alone, compared with those coinfected with HCV and S. mansoni. These findings suggest that the inability to generate an HCV-specific CD4+/Th1 T cell response plays a role in the persistence and severity of HCV infection in patients with S. mansoni coinfectio
Seroprevalence of Mycobacterium avium subsp. paratuberculosis in Dairy Cattle in Khartoum State, Sudan
Paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic wasting disease mainly of domestic and wild ruminants. It occurs worldwide, causing significant economic losses through decreased productivity, low fertility, increased cull rates and mortality. It is listed by the OIE (World Organization for Animal Health) as a disease of concern to trade in animals. Prevalence of this disease can be studied by detecting anti-MAP antibodies by Enzyme linked immunosorbent Assay (ELISA). The aim of this study was to investigate the current prevalence of MAP infection in cattle in Khartoum State. The overall apparent prevalence of MAP infection was found to be 6.3% and 18.9% at animal and herd levels, respectively. All seropositive animals were cross-bred females of good body condition; most of them (>90%) were >3 years old and >50% were from medium-sized herds in Omdurman. No significant association (p > 0.05) was found between seropositivity and animal herd size. The prevalence of MAP infection in Khartoum State is still low to medium compared to other parts of the world, but it is comparable to those reported from other African countries. Further studies with the view of designing nationwide surveys in domestic ruminants and camels in other states of the country are needed for establishing control programmes
Kinetics of Intrahepatic Hepatitis C Virus (HCV)-Specific CD4+ T Cell Responses in HCV and Schistosoma mansoni Coinfection: Relation to Progression of Liver Fibrosis
The kinetics of intrahepatic hepatitis C virus (HCV)-specific CD4+ T cell responses and their role in progression of fibrosis have not previously been characterized. Subjects with HCV/Schistosoma mansoni coinfection have a more rapid progression of HCV liver fibrosis than do those with HCV infection alone. The present prospective longitudinal study compared the liver histology, HCV-specific intrahepatic and peripheral CD4+ T cell proliferative responses, and cytokines (enzyme-linked immunospot) in 48 subjects with unresolved acute HCV infection with or without S. mansoni coinfection, at 6-10 months after acute infection and at the end of follow-up ( months), and the findings were correlated 96±8.7 to the rate of progression of fibrosis per year. Coinfected subjects had significant worsening of fibrosis, compared with subjects with HCV infection alone. At baseline, subjects with HCV infection alone had stronger multispecific intrahepatic HCV-specific CD4+ T helper 1 responses than did coinfected subjects, who had either no responses or weak, narrowly focused responses, and, over time, these T cell responses were maintained only in the liver. The rate of progression of fibrosis and virus load inversely correlated with intrahepatic HCV-specific CD4+ T cell response. The present prospective analysis indicates that enhancement of progression of liver fibrosis is associated with failure to develop early, multispecific, HCV-specific CD4+ Th1 responses, suggesting that novel therapeutic approaches inducing strong cellular immune responses might limit subsequent liver damage in individuals with chronic hepatitis
Paratuberculosis: The Hidden Killer of Small Ruminants
Paratuberculosis (PTB) is a contagious and chronic enteric disease of ruminants and many non-ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), and is characterised by diarrhoea and progressive emaciation with consequent serious economic losses due to death, early culling, and reduced productivity. In addition, indirect economic losses may arise from trade restrictions. Besides being a production limiting disease, PTB is a potential zoonosis; MAP has been isolated from Crohn’s disease patients and was associated with other human diseases, such as rheumatoid arthritis, Hashimoto’s thyroiditis, Type 1 diabetes, and multiple sclerosis. Paratuberculosis in sheep and goats may be globally distributed though information on the prevalence and economic impact in many developing countries seem to be scanty. Goats are more susceptible to infection than sheep and both species are likely to develop the clinical disease. Ingestion of feed and water contaminated with faeces of MAP-positive animals is the common route of infection, which then spreads horizontally and vertically. In African countries, PTB has been described as a “neglected disease”, and in small ruminants, which support the livelihood of people in rural areas and poor communities, the disease was rarely reported. Prevention and control of small ruminants’ PTB is difficult because diagnostic assays demonstrate poor sensitivity early in the disease process, in addition to the difficulties in identifying subclinically infected animals. Further studies are needed to provide more insight on molecular epidemiology, transmission, and impact on other animals or humans, socio-economic aspects, prevention and control of small ruminant PTB
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century