6 research outputs found

    Improving the Antibacterial Activity of Ceftazidime by Inulinase Purified from Staphylococcus Aureus

    Get PDF
    Inulinase is an enzyme catalyzing the hydrolysis of inulin, a plant stored polysaccharide, into fructoses and fructo- oligosaccharides that have a large spectrum of applications ranging from food industry to bioethanol production and pharmacology.Eight isolates of Staphylococcus aureus were isolated from agricultural rhizosphere soil samples with isolation percentage(32%)   and screened for higher inulinase production and found that Staphylococcus aureusS3 was the best producer. Inulinase was  partially purified with ammonium sulfate at 70% saturation and the specific activity reached to (7.01)U/mg protein. Inulinase led to enhancement ceftazidime activity against the bacteria and  gram positive bacteria more sensitive than negative bacteria to combination of inulinase and ceftazidime. These finding indicate that antistaphylococcal activity of ceftazidime antibiotic has increased in the presence of inulinase enzyme and the inulinase may be useful adjuvant agent for the treatment of S. aureus infections in combination with this antibiotic

    Nasopharyngeal carriage of Streptococcus pneumoniae in children under 5 years of age before introduction of pneumococcal vaccine (PCV10) in urban and rural districts in Pakistan

    Get PDF
    Background: Benefits of pneumococcal conjugate vaccine programs have been linked to the vaccine’s ability to disrupt nasopharyngeal carriage and transmission. The 10-valent pneumococcal vaccine (PCV10) was included in the Expanded Program on Immunization (EPI) in Sindh, Pakistan in February 2013. This study was carried out immediately before PCV10 introduction to establish baseline pneumococcal carriage and prevalent serotypes in young children and to determine if carriage differed in urban and rural communities.Methods: Nasopharyngeal specimens were collected from a random sample of children 3-11 and 12-59 months of age in an urban community (Karachi) and children 3-11 months of age in a rural community (Matiari). Samples were processed in a research laboratory in Karachi. Samples were transported in STGG media, enriched in Todd Hewitt broth, rabbit serum and yeast extract, cultured on 5% sheep blood agar, and serotyped using the CDC standardized sequential multiplex PCR assay. Serotypes were categorized into PCV10-type and non-vaccine types.Results: We enrolled 670 children. Pneumococci were detected in 73.6% and 79.5 % of children in the infant group in Karachi and Matiari, respectively, and 78.2% of children 12 to 59 months of age in Karachi. In infants, 38. 9% and 33.5% of those carrying pneumococci in Karachi and Matiari, respectively, had PCV10 types. In the older age group in Karachi, the proportion was 30.7%, not significantly different from infants. The most common serotypes were 6A, 23F, 19A, 6B and 19F.Conclusion: We found that about 3 of 4 children carried pneumococci, and this figure did not vary with age group or urban or rural residence. Planned annual surveys in the same communities will inform change in carriage of PCV10 serotype pneumococci after the introduction and uptake of PCV10 in these communitie

    Sodium Pre-Intercalation-Based Na3-δ-MnO2@CC for High-Performance Aqueous Asymmetric Supercapacitor: Joint Experimental and DFT Study

    No full text
    © 2022 by the authors. cc-byElectrochemical energy storage devices are ubiquitous for personal electronics, electric vehicles, smart grids, and future clean energy demand. SCs are EES devices with excellent power density and superior cycling ability. Herein, we focused on the fabrication and DFT calculations of Na3-δ-MnO2 nanocomposite, which has layered MnO2 redox-active sites, supported on carbon cloth. MnO2 has two-dimensional diffusion channels and is not labile to structural changes during intercalation; therefore, it is considered the best substrate for intercalation. Cation pre-intercalation has proven to be an effective way of increasing inter-layered spacing, optimizing the crystal structure, and improving the relevant electrochemical behavior of asymmetric aqueous supercapacitors. We successfully established Na+ pre-intercalated δ-MnO2 nanosheets on carbon cloth via one-pot hydrothermal synthesis. As a cathode, our prepared material exhibited an extended potential window of 0–1.4 V with a remarkable specific capacitance of 546 F g−1(300 F g−1 at 50 A g−1). Moreover, when this cathode was accompanied by an N-AC anode in an asymmetric aqueous supercapacitor, it illustrated exceptional performance (64 Wh kg−1 at a power density of 1225 W kg−1) and incomparable potential window of 2.4 V and 83% capacitance retention over 10,000 cycles with a great Columbic efficiency

    Self correction fractional least mean square algorithm for application in digital beamforming.

    No full text
    Fractional order algorithms demonstrate superior efficacy in signal processing while retaining the same level of implementation simplicity as traditional algorithms. The self-adjusting dual-stage fractional order least mean square algorithm, denoted as LFLMS, is developed to expedite convergence, improve precision, and incurring only a slight increase in computational complexity. The initial segment employs the least mean square (LMS), succeeded by the fractional LMS (FLMS) approach in the subsequent stage. The latter multiplies the LMS output, with a replica of the steering vector (Å”) of the intended signal. Mathematical convergence analysis and the mathematical derivation of the proposed approach are provided. Its weight adjustment integrates the conventional integer ordered gradient with a fractional-ordered. Its effectiveness is gauged through the minimization of mean square error (MSE), and thorough comparisons with alternative methods are conducted across various parameters in simulations. Simulation results underscore the superior performance of LFLMS. Notably, the convergence rate of LFLMS surpasses that of LMS by 59%, accompanied by a 49% improvement in MSE relative to LMS. So it is concluded that the LFLMS approach is a suitable choice for next generation wireless networks, including Internet of Things, 6G, radars and satellite communication
    corecore