29 research outputs found
Light forces in ultracold photoassociation
We study the time-resolved photoassociation of ultracold sodium in an optical
dipole trap. The photoassociation laser excites pairs of atoms to molecular
states of large total angular momentum at high intensities (above 20
kW/cm). Such transitions are generally suppressed at ultracold
temperatures by the centrifugal barriers for high partial waves. Time-resolved
ionization measurements reveal that the atoms are accelerated by the dipole
potential of the photoassociation beam. We change the collision energy by
varying the potential depth, and observe a strong variation of the
photoassociation rate. These results demonstrate the important role of light
forces in cw photoassociation at high intensities.Comment: 7 pages, 3 figure
Effective potentials for atom-atom interaction at low temperatures
We discuss the concept and design of effective atom-atom potentials that
accurately describe any physical processes involving only states around the
threshold. The existence of such potentials gives hope to a quantitative, and
systematic, understanding of quantum few-atom and quantum many-atom systems at
relatively low temperatures.Comment: 4 pages, 4 figure
Photoassociation of sodium in a Bose-Einstein condensate
We report on the formation of ultra-cold Na molecules using single-photon
photoassociation of a Bose-Einstein condensate. The photoassociation rate,
linewidth and light shift of the J=1, vibrational level of the
\mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the
photoassociation rate constant increases linearly with intensity, even where it
is predicted that many-body effects might limit the rate. Our observations are
everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity
type stuff, nothing Earth-shatterin
Realization of Bose-Einstein condensates in lower dimensions
Bose-Einstein condensates of sodium atoms have been prepared in optical and
magnetic traps in which the energy-level spacing in one or two dimensions
exceeds the interaction energy between atoms, realizing condensates of lower
dimensionality. The cross-over into two-dimensional and one-dimensional
condensates was observed by a change in aspect ratio and saturation of the
release energy when the number of trapped atoms was reduced
B-NMR of 8Li+ in rutile TiO2
We report preliminary low-energy B-NMR measurements of 8Li+ implanted in single crystal rutile TiO2 at an applied field of 6.55 T and 300 K. We observe a broad 12 kHz wide quadrupole split resonance with unresolved features and a sharp component at the Larmor frequency. The line broadening may be caused by overlapping multi-quantum transitions or motion of 8Li+ on the scale of its lifetime (1.21 s). We also find spin-lattice relaxation that is relatively fast compared to other wide band gap insulators. The origin of this fast relaxation is also likely quadrupolar and may be due to anisotropic 8Li+ diffusion
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review