94 research outputs found

    Fractal superconducting nanowires detect infrared single photons with 91% polarization-independent system efficiency and 19 ps timing resolution

    Full text link
    The near-unity detection efficiency and excellent timing resolution of superconducting nanowire single-photon detectors (SNSPDs), combined with their other merits, have enabled many classical and quantum photonic applications. However, the prevalent design based on meandering nanowires makes the detection efficiency dependent on the polarization states of the incident photons; for unpolarized light, the major merit of high detection efficiency would get compromised, which could be detrimental for photon-starved applications. In quantum-key distribution systems, the polarization dependence of detection efficiency of the SNSPDs could also be a vulnerable security loophole. Here, we create SNSPDs with an arced fractal topology that almost completely eliminates this polarization dependence of the detection efficiency while preserving other major merits of the SNSPDs. We experimentally demonstrated 91±\pm2% system detection efficiency at the wavelength of 1590 nm for photons in any polarization state and 19 ps timing jitter. The detector was fiber-coupled and fully packaged in a 0.1-W close-cycled Gifford-McMahon cryocooler. This demonstration provides a novel, practical device structure of SNSPDs, allowing for operation in the visible, near- and mid-infrared spectral ranges, and paves the way for polarization-insensitive single-photon detection with high detection efficiency and high timing resolution.Comment: 19 pages, 11 figure

    A two-dimensional optomechanical crystal for quantum transduction

    Full text link
    Integrated optomechanical systems are one of the leading platforms for manipulating, sensing, and distributing quantum information. The temperature increase due to residual optical absorption sets the ultimate limit on performance for these applications. In this work, we demonstrate a two-dimensional optomechanical crystal geometry, named \textbf{b-dagger}, that alleviates this problem through increased thermal anchoring to the surrounding material. Our mechanical mode operates at 7.4 GHz, well within the operation range of standard cryogenic microwave hardware and piezoelectric transducers. The enhanced thermalization combined with the large optomechanical coupling rates, g0/2π880 kHzg_0/2\pi \approx 880~\mathrm{kHz}, and high optical quality factors, Qopt=2.4×105Q_\text{opt} = 2.4 \times 10^5, enables the ground-state cooling of the acoustic mode to phononic occupancies as low as nm=0.35n_\text{m} = 0.35 from an initial temperature of 3 kelvin, as well as entering the optomechanical strong-coupling regime. Finally, we perform pulsed sideband asymmetry of our devices at a temperature below 10 millikelvin and demonstrate ground-state operation (nm<0.45n_\text{m} < 0.45) for repetition rates as high as 3 MHz. Our results extend the boundaries of optomechanical system capabilities and establish a robust foundation for the next generation of microwave-to-optical transducers with entanglement rates overcoming the decoherence rates of state-of-the-art superconducting qubits.Comment: 13 pages, 4 main figure

    Reconfigurable frequency coding of triggered single photons in the telecom C--band

    Full text link
    In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C-band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-shelf phase modulator. The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-phase epitaxy within the transparency window of the backbone fiber optical network. A cross-correlation measurement of the sidebands demonstrates the preservation of the single photon nature; an important prerequisite for future quantum technology applications using the existing telecommunication fiber network.Comment: Samuel Gyger and Katharina D. Zeuner contributed equall

    Reconfigurable frequency coding of triggered single photons in the telecom C--band

    Get PDF
    In this work, we demonstrate reconfigurable frequency manipulation of quantum states of light in the telecom C-band. Triggered single photons are encoded in a superposition state of three channels using sidebands up to 53 GHz created by an off-the-shelf phase modulator. The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-phase epitaxy within the transparency window of the backbone fiber optical network. A cross-correlation measurement of the sidebands demonstrates the preservation of the single photon nature; an important prerequisite for future quantum technology applications using the existing telecommunication fiber network.Comment: Samuel Gyger and Katharina D. Zeuner contributed equall

    Single-Mode Squeezed Light Generation and Tomography with an Integrated Optical Parametric Oscillator

    Full text link
    Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ(2)\chi^{(2)} nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light. Our system integrates all essential components -- except for the laser and two detectors -- on a single chip with an area of one square centimeter, significantly reducing the size, operational complexity, and power consumption associated with conventional setups. Our work addresses challenges that have limited previous integrated nonlinear photonic implementations that rely on either χ(3)\chi^{(3)} nonlinear resonators or on integrated waveguide χ(2)\chi^{(2)} parametric amplifiers. Using the balanced homodyne measurement subsystem that we implemented on the same chip, we measure a squeezing of 0.55 dB and an anti-squeezing of 1.55 dB. We use 20 mW of input power to generate the parametric oscillator pump field by employing second harmonic generation on the same chip. Our work represents a substantial step toward compact and efficient quantum optical systems posed to leverage the rapid advances in integrated nonlinear and quantum photonics.Comment: 21 pages; 4 figures in main body, 8 supplementary figure

    Resonance fluorescence from waveguide-coupled strain-localized two-dimensional quantum emitters

    Get PDF
    Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two-dimensional (2D) semiconductors. However, resonant excitation and single-photon emission of waveguide-coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second-order autocorrelation of g(2)(0)=0.150±0.093^{(2)}(0)=0.150\pm0.093 and perform on-chip resonant excitation yielding a g(2)(0)=0.377±0.081^{(2)}(0)=0.377\pm0.081. Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit

    Resonance fluorescence from waveguide-coupled strain-localized two-dimensional quantum emitters

    Get PDF
    Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two-dimensional (2D) semiconductors. However, resonant excitation and single-photon emission of waveguide-coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second-order autocorrelation of g(2)(0)=0.150±0.093^{(2)}(0)=0.150\pm0.093 and perform on-chip resonant excitation yielding a g(2)(0)=0.377±0.081^{(2)}(0)=0.377\pm0.081. Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit
    corecore