7 research outputs found

    Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice

    Get PDF
    Aim: To determine the efficacy of human relaxin-2 (hRLX2) in reversing radiation-induced bladder fibrosis and lower urinary tract dysfunction (LUTD). Radiation cystitis is a consequence of radiotherapy for pelvic malignancies. Acutely, irradiation leads to reactive oxygen/nitrogen species in urothelial cells, apoptosis, barrier disruption, and inflammation. Chronically, this results in collagen deposition, bladder fibrosis, and attenuated storage and voiding functions. In severe cases, cystectomies are performed as current therapies do not reverse fibrosis. Methods: We developed a mouse model for selective bladder irradiation (10 Gray; 1 Gy=100 rads) resulting in chronic fibrosis within 6 weeks, with decreased bladder compliance, contractility, and overflow incontinence. Seven weeks post-irradiation, female C57Bl/6 mice were continuously infused with hRLX2 (400ÎĽg/kg/day/14 days) or vehicle (saline) via subcutaneous osmotic pumps. Mice were evaluated in vivo using urine spot analysis, cystometrograms and external urethral sphincter electromyograms; and in vitro using length-tension measurements, Western blots, histology, and immunohistochemistry. Results: hRLX2 reversed fibrosis, decreased collagen content, improved bladder wall architecture, and increased bladder compliance, detrusor smooth muscle Cav1.2 expression and detrusor contractility in mice with chronic radiation cystitis. hRLX2 treatment outcomes were likely caused by the activation of RXFP1/2 receptors which are expressed on the detrusor. Conclusion: hRLX2 may be a new therapeutic option for rescuing bladders with chronic radiation cystitis

    Targeting p75 neurotrophin receptors ameliorates spinal cord injury-induced detrusor sphincter dyssynergia in mice

    Get PDF
    Aims: To determine the role of p75 neurotrophin receptor (p75NTR) and the therapeutic effect of the selective small molecule p75NTR modulator, LM11A-31, in spinal cord injury (SCI) induced lower urinary tract dysfunction (LTUD) using a mouse model. Methods: Adult female T8-T9 transected mice were gavaged daily with LM11A-31 (100mg/kg) for up to 6 weeks, starting 1 day before, or 7 days following injury. Mice were evaluated in vivo using urine spot analysis, cystometrograms (CMGs), and external urethral sphincter (EUS) electromyograms (EMGs); and in vitro using histology, immunohistochemistry, and Western blot. Results: Our studies confirm highest expression of p75NTRs in the detrusor layer of the mouse bladder and lamina II region of the dorsal horn of the lumbar-sacral (L6-S1) spinal cord which significantly decreased following SCI. LM11A-31 prevented or ameliorated the detrusor sphincter dyssynergia (DSD) and detrusor overactivity (DO) in SCI mice, significantly improving bladder compliance. Furthermore, LM11A-31 treatment blocked the SCI-related urothelial damage and bladder wall remodeling. Conclusion: Drugs targeting p75NTRs can moderate DSD and DO in SCI mice, may identify pathophysiological mechanisms, and have therapeutic potential in SCI patients

    Corrigendum: Inflammation and Tissue Remodeling in the Bladder and Urethra in Feline Interstitial Cystitis

    Get PDF
    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn’s nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a “sensory network” and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome

    Inflammation and Tissue Remodeling in the Bladder and Urethra in Feline Interstitial Cystitis

    Full text link
    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn’s nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a “sensory network” and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome

    Pain, Analgesic Use, and Patient Satisfaction With Spinal Versus General Anesthesia for Hip Fracture Surgery : A Randomized Clinical Trial.

    Full text link
    BACKGROUND: The REGAIN (Regional versus General Anesthesia for Promoting Independence after Hip Fracture) trial found similar ambulation and survival at 60 days with spinal versus general anesthesia for hip fracture surgery. Trial outcomes evaluating pain, prescription analgesic use, and patient satisfaction have not yet been reported. OBJECTIVE: To compare pain, analgesic use, and satisfaction after hip fracture surgery with spinal versus general anesthesia. DESIGN: Preplanned secondary analysis of a pragmatic randomized trial. (ClinicalTrials.gov: NCT02507505). SETTING: 46 U.S. and Canadian hospitals. PARTICIPANTS: Patients aged 50 years or older undergoing hip fracture surgery. INTERVENTION: Spinal or general anesthesia. MEASUREMENTS: Pain on postoperative days 1 through 3; 60-, 180-, and 365-day pain and prescription analgesic use; and satisfaction with care. RESULTS: A total of 1600 patients were enrolled. The average age was 78 years, and 77% were women. A total of 73.5% (1050 of 1428) of patients reported severe pain during the first 24 hours after surgery. Worst pain over the first 24 hours after surgery was greater with spinal anesthesia (rated from 0 [no pain] to 10 [worst pain imaginable]; mean difference, 0.40 [95% CI, 0.12 to 0.68]). Pain did not differ across groups at other time points. Prescription analgesic use at 60 days occurred in 25% (141 of 563) and 18.8% (108 of 574) of patients assigned to spinal and general anesthesia, respectively (relative risk, 1.33 [CI, 1.06 to 1.65]). Satisfaction was similar across groups. LIMITATION: Missing outcome data and multiple outcomes assessed. CONCLUSION: Severe pain is common after hip fracture. Spinal anesthesia was associated with more pain in the first 24 hours after surgery and more prescription analgesic use at 60 days compared with general anesthesia. PRIMARY FUNDING SOURCE: Patient-Centered Outcomes Research Institut
    corecore