13 research outputs found

    Demographic histories shape population genomics of the common coral grouper (Plectropomus leopardus)

    Get PDF
    Many coral reef fishes display remarkable genetic and phenotypic variation across their geographic ranges. Understanding how historical and contemporary processes have shaped these patterns remains a focal question in evolutionary biology since they reveal how diversity is generated and how it may respond to future environmental change. Here, we compare the population genomics and demographic histories of a commercially and ecologically important coral reef fish, the common coral grouper (Plectropomus leopardus [Lacepede 1802]), across two adjoining regions (the Great Barrier Reef; GBR, and the Coral Sea, Australia) spanning approximately 14 degrees of latitude and 9 degrees of longitude. We analysed 4548 single nucleotide polymorphism (SNP) markers across 11 sites and show that genetic connectivity between regions is low, despite their relative proximity (similar to 100km) and an absence of any obvious geographic barrier. Inferred demographic histories using 10,479 markers suggest that the Coral Sea population was founded by a small number of GBR individuals and that divergence occurred similar to 190 kya under a model of isolation with asymmetric migration. We detected population expansions in both regions, but estimates of contemporary effective population sizes were approximately 50% smaller in Coral Sea sites, which also had lower genetic diversity. Our results suggest that P. leopardus in the Coral Sea have experienced a long period of isolation that precedes the recent glacial period (similar to 10-120 kya) and may be vulnerable to localized disturbances due to their relative reliance on local larval replenishment. While it is difficult to determine the underlying events that led to the divergence of the Coral Sea and GBR lineages, we show that even geographically proximate populations of a widely dispersed coral reef fish can have vastly different evolutionary histories

    Comparative demography of commercially important species of coral grouper, Plectropomus leopardus and P. laevis, from Australia's great barrier reef and Coral Sea marine parks

    No full text
    Understanding the spatial and environmental variation in demographic processes of fisheries target species, such as coral grouper (Genus: Plectropomus), is important for establishing effective management and conservation strategies. Herein we compare the demography of Plectropomus leopardus and P. laevis between Australia's Great Barrier Reef Marine Park (GBRMP), which has been subject to sustained and extensive fishing pressure, and the oceanic atolls of Australia's Coral Sea Marine Park (CSMP), where there is very limited fishing for reef fishes. Coral grouper length‐at‐age data from contemporary and historical otolith collections across 9.4 degrees of latitude showed little difference in lifetime growth between GBRMP and CSMP regions. Plectropomus laevis populations in GBRMP reefs had significantly higher rates of total mortality than populations in the CSMP. Mean maximum lengths and mean maximum ages of P. laevis were also smaller in the GBRMP than in the CSMP, even when considering populations sampled within GBRMP no‐take marine reserves (NTMRs). Plectropomus leopardus, individuals were on average smaller on fished reefs than NTMRs in the GBRMP, but all other aspects of demography were broadly similar between regions despite the negligible levels of fishing pressure in the CSMP. Similarities between regions in growth profiles and length‐at‐age comparisons of P. laevis and P. leopardus suggest that the environmental differences between the CSMP and the GBRMP may not have significant impacts on lifetime growth. Our results show that fishing may have influenced the demography of coral grouper on the GBR, particularly for the slower growing and longer lived species, P. laevis

    Regional versus latitudinal variation in the life-history traits and demographic rates of a reef fish, Centropyge bispinosa, in the Coral Sea and Great Barrier Reef Marine Parks, Australia

    No full text
    Environmental temperature is an important determinant of physiological processes and life histories in ectotherms. Over latitudinal scales, variation in temperature has been linked to changes in life-history traits and demographic rates, with growth and mortality rates generally being greatest at low latitudes, and longevity and maximum length being greater at higher latitudes. Using the two-spined angelfish, Centropyge bispinosa, as our focal species, we compared growth patterns, growth rates, longevity, mortality, asymptotic length and maximum length across 22 reefs that span 13° of latitude within the Great Barrier Reef Marine Park (GBRMP) and the Coral Sea Marine Park (CSMP), Australia. We found no predictable latitudinal variation in mortality rates, growth patterns, growth rates, asymptotic or maximum length of C. bispinosa at regional to biogeographic scales. However, C. bispinosa consistently exhibited reduced longevity at lower, warmer latitudes within the CSMP. The greatest differences in mean maximum length of C. bispinosa were between continental (GBRMP) and oceanic (central CSMP) reefs of similar latitude, with individuals being larger on average on continental versus oceanic reefs. The lack of predictable life-history and demographic variation in C. bispinosa across a 13° latitudinal gradient within the CSMP, coupled with differences in mean maximum length between continental and oceanic reefs at similar latitudes, suggest that local environmental conditions have a greater influence than environmental temperature on the demographic rates and life-history traits of C. bispinosa

    Hybridisation among groupers (genus Cephalopholis) at the eastern Indian Ocean suture zone: taxonomic and evolutionary implications

    No full text
    Hybridisation is a significant evolutionary process that until recently was considered rare in the marine environment. A suture zone in the eastern Indian Ocean is home to numerous hybridising sister species, providing an ideal opportunity to determine how hybridisation affects speciation and biodiversity in coral reef fishes. At this location, hybridisation between two grouper (Epinephelidae) species: Cephalopholis urodeta (Pacific Ocean) and C. nigripinnis (Indian Ocean) was investigated to determine the genetic basis of hybridisation and to compare the ecology and life history of hybrids and their parent species. This approach aimed to provide insights into the taxonomic and evolutionary consequences of hybridisation. Despite clear phenotypic differences, multiple molecular markers revealed hybrids, and their parent species were genetically homogenous within and (thousands of kilometres) outside of the hybrid zone. Hybrids were at least as fit as their parent species (in terms of growth, reproduction, and abundance) and were observed in a broad range of intermediate phenotypes. The two species appear to be interbreeding at Christmas Island due to inherent biological and ecological compatibilities, and the lack of genetic structure may be explained by three potential scenarios: (1) hybridisation and introgression; (2) discordance between morphology and genetics; and (3) incomplete lineage sorting. Further molecular analyses are necessary to discriminate these scenarios. Regardless of which applies, C. urodeta and C. nigripinnis are unlikely to evolve in reproductive isolation as they cohabit where they are common (Christmas Island) and will source congeneric mates where they are rare (Cocos Keeling Islands). Our results add to the growing body of evidence that hybridisation among coral reef fishes is a dynamic evolutionary factor. © 2016 Springer-Verlag Berlin Heidelberg

    Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis

    No full text
    Brown adipose tissue dissipates energy in the form of heat. Recent studies have shown that adult humans possess both classical brown and beige adipocytes (brown-like adipocytes in white adipose tissue, WAT), and stimulating brown and beige adipocyte formation can be a new avenue to treat obesity. Angiotensin II (AngII) is a peptide hormone that plays important roles in energy metabolism via its angiotensin type 1 or type 2 receptors (AT1R and AT2R). Adipose tissue is a major source of AngII and expresses both types of its receptors, implying the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. Here, based on the in vitro studies on primary cultures of mouse white adipocytes, we report that, AT2R activation, either by AngII or AT2R agonist (C21), induces white adipocyte browning, by increasing PPARÎł expression, at least in part, via ERK1/2, PI3kinase/Akt and AMPK signaling pathways. It is also found that AngII-AT2R enhances brown adipogenesis. In the in vivo studies on mice, administration of AT1R antagonist (ZD7155) or AT2R agonist (C21) leads to the increase of WAT browning, body temperature and serum adiponectin, as well as the decrease of WAT mass and the serum levels of TNFα, triglycerides and free fatty acids. In addition, AT2R-induced browning effect is also observed in human white adipocytes, as evidenced by the increased UCP1 expression and oxygen consumption. Finally, we provide evidence that AT2R plays important roles in hormone T3-induced white adipose browning. This study, for the first time, reveals the browning and brown adipogenic effects of AT2R and suggests a potential therapeutic target to combat obesity and related metabolic disorders.Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionThis work was supported by the Singapore National Research Foundation under its CBRG grant (NMRC/CBRG/0070/2014) and administrated by the Singapore Ministry of Health’s National Medical Research Council

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore