21 research outputs found
Excitation and resonant enhancement of axisymmetric internal wave modes
To date, axisymmetric internal wave fields, which have relevance to
atmospheric internal wave fields generated by storm cells and oceanic
near-inertial wave fields generated by surface storms, have been experimentally
realized using an oscillating sphere or torus as the source. Here, we use a
novel wave generator configuration capable of exciting axisymmetric internal
wave fields of arbitrary radial form to generate axisymmetric internal wave
modes. After establishing the theoretical background for axisymmetric mode
propagation, taking into account lateral and vertical confinement, and also
accounting for the effects of weak viscosity, we experimentally generate and
study modes of different order. We characterize the efficiency of the wave
generator through careful measurement of the wave amplitude based upon group
velocity arguments. This established, we investigate the ability of vertical
confinement to induce resonance, identifying a series of experimental resonant
peaks that agree well with theoretical predictions. In the vicinity of
resonance, the wave fields undergo a transition to non-linear behaviour that is
initiated on the central axis of the domain and proceeds to erode the wave
field throughout the domain.Comment: 15 pages, 9 figure
Pressure dependent friction on granular slopes close to avalanche
We investigate the sliding of objects on an inclined granular surface close
to the avalanche threshold. Our experiments show that the stability is driven
by the surface deformations. Heavy objects generate footprint-like deformations
which stabilize the objects on the slopes. Light objects do not disturb the
sandy surfaces and are also stable. For intermediate weights, the deformations
of the surface destabilize the objects and generate sliding. A characteristic
pressure for which the solid friction is minimal is evidenced. Applications to
the locomotion of devices and animals on sandy slopes as a function of their
mass are proposed
Axisymmetric internal wave transmission and resonance in non-linear stratifications
To date, the influence of non-linear stratifications and two layer
stratifications on internal wave propagation has been studied for
two-dimensional wave fields in a cartesian geometry. Here, we use a novel wave
generator configuration to investigate transmission in non-linear
stratifications of axisymmetric internal wave. Two configurations are studied,
both theoretically and experimentally. In the case of a free incident wave, a
transmission maximum is found in the vicinity of evanescent frequencies. In the
case of a confined incident wave, resonant effects lead to enhanced
transmission rates from an upper layer to layer below. We consider the
oceanographic relevance of these results by applying them to an example oceanic
stratification, finding that there can be real-world implications.Comment: 21 pages, 15 figure
Convection in a mushy-layer along a heated wall
Motivated by the mushy zones of sea ice, volcanoes, and icy moons of the
outer solar system, we perform a theoretical and numerical study of
boundary-layer convection along a vertical heated wall in a bounded ideal mushy
region. The mush is comprised of a porous and reactive binary alloy with a
mixture of saline liquid in a solid matrix, and is studied in the near-eutectic
approximation. Here we demonstrate the existence of four regions and study
their behavior asymptotically. Starting from the bottom of the wall, the four
regions are (i) an isotropic corner region; (ii) a buoyancy dominated vertical
boundary layer; (iii) an isotropic connection region; and (iv) a horizontal
boundary layer at the top boundary with strong gradients of pressure and
buoyancy. Scalings from numerical simulations are consistent with the
theoretical predictions. Close to the heated wall, the convection in the mushy
layer is similar to a rising buoyant plume abruptly stopped at the top, leading
to increased pressure and temperature in the upper region, whose impact is
discussed as an efficient melting mechanism
Forced wakes far from threshold: Stuart-Landau equation applied to experimental data
In this Rapid Communication, we study with the Stuart-Landau (SL) amplitude equation, a wake flow control scenario using experimental data from a cylinder wake forced by plasma actuators. Given the formal framework recently discussed by Gallaire et al. [Fluid Dyn. Res. 48, 061401 (2016)FDRSEH0169-598310.1088/0169-5983/48/6/061401] on pushing amplitude equations far from threshold, we analyze experimental data of a forced wake in order to test the SL reduced order model. Linear stability theory and global mode concepts are used to determine the SL parameters. The extension to forced wakes of the SL model had been proposed by Thira and Wesfreid [J. Fluid Mech. 579, 137 (2007)JFLSA70022-112010.1017/S0022112007004818] in the context of their study on stability properties, but its employment still remained an open question. Here, we show that a forced wake at a Reynolds number far from the first threshold can also attain the critical behavior described by the SL model.Fil: Boury, Samuel. Universidad de Buenos Aires. Facultad de IngenierĂa. Departamento de IngenierĂa Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Thiria, Benjamin. Centre National de la Recherche Scientifique; FranciaFil: Godoy Diana, Ramiro. Centre National de la Recherche Scientifique. Laboratoire Pmmh-umr 7636; FranciaFil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de IngenierĂa. Departamento de IngenierĂa Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Wesfreid, JosĂ© Eduardo. Centre National de la Recherche Scientifique. Laboratoire Pmmh-umr 7636; FranciaFil: D'adamo, Juan GastĂłn Leonel. Universidad de Buenos Aires. Facultad de IngenierĂa. Departamento de IngenierĂa Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
A warm Jet in a cold ocean
Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre
Transport d'énergie et de flottabilité par ondes gravito-inertielles dans des stratifications non-linéaires. Application à l'océan
Inertia-gravity waves contribute to the worldwide transport of energy and momentum in the oceans, and theyplay a crucial role in stratified mixing through non-linear processes transferring energy from scales to scalessuch as super-harmonic generation or triadic resonant instability.Of primary relevance are these waves to the Arctic Ocean, and more particularly energy transport by internalwaves created by storms at the surface of the ocean. Due to increasing ice melting in the last decades, thesurface of the Arctic Ocean is more exposed to winds and storms than ever and for a longer durationthroughout the year. The very stratified layers of the ocean can now be disturbed by atmospheric events and,in return, the modified dynamics of energy transport plays a crucial role in climate changes. A betterunderstanding of how storm energy can be transferred to the ocean, and of how it can propagate through, isa very relevant issue.Based on these considerations, this thesis explores the impact of the geometry on internal wave propagationin stratified and rotating media, both in the linear and non-linear theory. Different phenomena such as modes,wave resonator, transmission though buoyancy interface, tunnelling effect, super-harmonic generation andtriadic resonant instability, wave attractors, are discussed. Theory is validated by experiments, through the useof a storm-like axisymmetric wave generator creating inertia-gravity waves in stratified and rotating fluids, inconfined and unconfined cylindrical geometries. Applications to in-situ measurements are also proposed withcomparisons to internal waves in real world stratifications.Les ondes gravito-inertielles contribuent au transport global d’énergie et d’impulsion dans les océans, et elles jouent un rôle crucial dans le mélange stratifié par des processus non-linéaires transférant l'énergie d'une échelle à l'autre, comme la génération de super-harmoniques ou l'instabilité résonante triadique. Ces ondes sont d'une importance capitale pour l'océan Arctique, et plus particulièrement le transport d'énergie par les ondes internes créées par des tempêtes à la surface de l'océan. En raison de la fonte croissante des glaces au cours des dernières décennies, la surface de l'océan Arctique est plus exposée que jamais aux vents et aux tempêtes et ce pendant une plus longue période de l'année. Les couches très stratifiées de l'océan peuvent maintenant être perturbées par des événements atmosphériques et, par conséquent, la nouvelle dynamique du transport de l'énergie peut jouer un rôle crucial dans les changements climatiques. Une meilleure compréhension de la façon dont l'énergie des tempêtes peut être transférée à l'océan et de la façon dont elle peut se propager est ainsi une question très pertinente aujourd’hui. Sur la base de ces considérations, cette thèse explore l'impact de la géométrie sur la propagation des ondes internes dans les milieux stratifiés et en rotation, tant dans la théorie linéaire que non-linéaire. Différents phénomènes tels que les modes, le résonateur d'ondes, la transmission au niveau d’une interface en flottabilité, l'effet tunnel, la génération de super-harmoniques et l'instabilité résonante triadique, les attracteurs d'ondes, sont abordés. La théorie est validée par des expériences, grâce à l'utilisation d'un générateur d’ondes axisymétriques créant des ondes gravito-inertielles analogues à un forçage de type tempête dans des fluides stratifiés et en rotation, en géométries cylindriques confinées et non confinées. Des applications à des mesures in-situ sont également proposées avec des comparaisons aux ondes
Complications des gastrostomies percutanées posées par voie radiologique (une série lilloise de 208 patients)
LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF