22 research outputs found

    Interface limited hole extraction from methylammonium lead iodide films

    Get PDF
    Small solar cells based on metal halide perovskites have shown a tremendous increase in efficiency in recent years. These huge strides in device performance make it important to understand processes such as accumulation and extraction of charge carriers to better address the scalability and stability challenges which have not been solved yet. In most studies to date it is unclear whether the limiting factor of charge extraction is charge transport in the bulk of the perovskite or transfer across the interface with the charge extracting layer, owing largely to the inaccessibility of buried interfaces. Separating bulk and interfacial effects on charge extraction can help the search for new charge extracting materials, improve understanding of charge transport in active layer materials and help optimise device performance; not only in the laboratory setting but also for commercial production. Here we present a method to unambiguously distinguish between bulk and interface effects on charge extraction dynamics which is based on time-resolved photoluminescence with different excitation density profiles. We use this method to study charge extraction from solution-deposited CH3NH3PbI3 films to NiO and PEDOT:PSS layers. We find that NiO shows faster hole extraction than PEDOT:PSS from the 300 nm thick perovskite film on the time scale of 300 ps which is independent of charge carrier density in the region of 1016–1017 cm−3. The interface with NiO is found to only slightly limit charge extraction rate at charge densities exceeding 1016 cm−3 as the extraction rate is fast and does not decrease with time. This is in contrast to PEDOT:PSS where we find the charge extraction rate to be slower, decreasing with time and dependent on charge density in the region 1016–1017 cm−3 which we interpret as charge accumulation at the interface. Hence we find that charge extraction is severely limited by the interface with PEDOT:PSS. These findings are confirmed by transient absorption spectroscopy. A hole diffusion coefficient of D = (2.2 ± 0.5) cm2 s−1 was determined in the perovskite film that is independent of charge density. This indicates a band-like hole transport regime, not observed for solution processed films before. Our findings stress the importance of interface optimization in devices based on perovskite active layers as there is still room for improvement of the hole extraction rate even in the case of the superior NiO layer

    Controlling exciton diffusion and fullerene distribution in photovoltaic blends by side chain modification

    Get PDF
    The influence of crystallinity on exciton diffusion and fullerene distribution was investigated by blending amorphous and semicrystalline copolymers. We measured exciton diffusion and fluorescence quenching in such blends by dispersing fullerene molecules into them. We find that the diffusion length is more than two times higher in the semicrystalline copolymer than in the amorphous copolymer. We also find that fullerene preferentially mixes into disordered regions of the polymer film. This shows that relatively small differences in molecular structure are important for exciton diffusion and fullerene distribution

    Enhanced exciton harvesting in a planar heterojunction organic photovoltaic device by solvent vapor annealing

    Get PDF
    The singlet exciton diffusion length was measured in a small molecule electron donor material DR3TBDTT using fluorescence quenching at a planar interface with a cross-linked fullerene derivative. The one-dimensional exciton diffusion length was increased from ~16 to ~24 nm by annealing the film in carbon disulfide solvent vapor. Planar heterojunction solar cells were fabricated using bilayers of these materials and it was found that solvent vapor annealing increased the short circuit current density by 46%. This can be explained by improved exciton harvesting in the annealed bilayer

    Improved efficiency of PbS quantum dot sensitized NiO photocathodes with naphthalene diimide electron acceptor bound to the surface of the nanocrystals

    Get PDF
    Hybrid materials combining a wide bandgap metal oxide semiconductor, metal chalcogenide nanocrystals and molecular systems represent very attractive materials for fabricating devices with new function or improved photoelectrochemical performance. This study deals with sensitization of NiO, which is a p-type semiconductor, by quantum dots (QDs) of PbS with an average diameter of 3 nm. The PbS QDs were attached to the monocrystalline film of NiO by mercaptopropionic acid linker and were subsequently capped with methyl-pyridine naphthalene diimide (NDI) units to prepare quantum dot sensitized solar cells (p-QDSSCs) on NiO electrodes. Time-resolved photoluminescence measurements of the PbS emission were used to determine the rate constants for charge transfer from the PbS exciton to the NiO, cobalt based redox mediator and NDI. Notably, it was shown that NDI quenches the PbS exciton by electron transfer with a quite fast rate constant (6.9 × 107 s−1). The PbS QDs sensitized NiO films were finally used to fabricate solar cells with tris(4,4′-ditert-butyl-2,2′-bipyridine) cobalt(III/II) as redox mediator. It was observed that the presence of NDI on PbS improved the photovoltaic performance by 50% relative to that of cells without NDI, leading to a device with the following characteristics: Jsc = 5.75 mA/cm2, Voc = 226 mV, ff = 34% and PCE = 0.44%. This study demonstrates that photogalvanic processes can be a productive pathway to better performing sensitized p-type semiconductor for p-QDSSC. In other words, photoinduced electron transfer from the QDs towards the electrolyte rather than initial photoinduced charge injection into the p-type semiconductor can be a favorable operative mechanism in QD sensitized NiO films and might be exploited further for the construction of better performing solar cells or photocatalytic devices

    Correlating photovoltaic properties of PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing

    Get PDF
    Selective optimisation of light harvesting materials and interface properties has brought breakthroughs in power conversion efficiency (11–12%) of organic photovoltaics (OPVs). However to translate this promising efficiency to economically viable applications, long term stability is a fundamental requirement. A number of degradation pathways, both extrinsic and intrinsic, reduce the long term stability of OPVs. Here, the photovoltaic properties of a highly efficient bulk heterojunction PTB7-Th:PC71BM blend were investigated as a function of ex situ thermal annealing. The changes in charge generation, separation, and transport due to thermal annealing were measured and related to changes in the microstructure and photovoltaic performance. A 30% drop in the power conversion efficiency of PTB7-Th:PC71BM blends upon thermal annealing at 150 °C was identified as mainly due to morphological instability induced by strong phase separation of donor and acceptor molecules of the blend films. Based on the insight gained from these investigations, enhanced thermal stability was demonstrated by replacing the PC71BM fullerene acceptor with a non-fullerene acceptor ITIC, for which power conversion efficiency dropped only by 9% upon thermal annealing at 150 °C

    Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics

    Get PDF
    n organic photovoltaic blends, there is a trade-off between exciton harvesting and charge extraction because of the short exciton diffusion length. Developing a way of increasing exciton diffusion length would overcome this trade-off by enabling efficient light harvesting from large domains. In this work, we engineered (enhanced) both exciton diffusion length and domain size using solvent vapour annealing (SVA). We show that SVA can give a three-fold enhancement in exciton diffusion coefficient (D) and nearly a doubling of exciton diffusion length. It also increases the domain size, leading to enhancement of charge extraction efficiency from 63 to 89%. Usually larger domains would reduce exciton harvesting but this is overcome by the large increase in exciton diffusion, leading to a 20% enhancement in device efficiency

    High-Bandwidth Organic Light Emitting Diodes for Ultra-Low Cost Visible Light Communication Links

    Get PDF
    Visible light communications (VLC) have attracted considerable interest in recent years due to an increasing need for data communication links in home and enterprise environments. Organic light-emitting diodes (OLEDs) are widely used in display applications owing to their high brightness, high quality colour-rending capability and low cost. As a result, they are attractive candidates for the implementation of ultra-low cost visible light optical links in free-space and guided-wave communications. However, OLEDs need to exhibit a bandwidth of at least ~MHz to be able to support the modest data rates (~Mbps) required in these applications. Although fluorescent OLEDs typically exhibit shorter photon lifetimes than inorganic LEDs, the bandwidth performance of the large size OLEDs used in display applications are limited by their electrical characteristics. In this work, we present a detailed physical simulation that describes well the performance of fast OLED devices that exhibit significant -3 dB bandwidths (f-3dB) of 44 MHz obtained for a 0.12 mm2 device. It is demonstrated that the reduction of the device size results in a significant bandwidth improvement due primarily to a reduction in parasitic capacitance of the devices, though this is counteracted by carrier dynamic effects. The model provides an insight into the basic physical properties of the OLED and may be used for optimisation of future generations of OLED devices.EPSRC EP/K00042X/1 EPSRC Studentship 146672

    Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation

    Get PDF
    Quantum dots (QDs) are very attractive materials for solar cells due to their high absorption coefficients, size dependence and easy tunability of their optical and electronic properties due to quantum confinement. Particularly interesting are the PbS QDs owing to their broad spectral absorption until the long wavelengths, their easy processability and low cost. Here, we used control of the PbS QDs size to understand charge transfer processes at the interfaces of NiO semiconductor and explain the optimal QDs size in photovoltaic devices. Towards this goal, we have synthesized a series of PbS QDs with different diameters (2.8 A until 4A) and investigated charge transfer dynamics by time resolved spectroscopy and their ability to act as sensitizers in nanocrystalline NiO based solar cells using the cobalt tris(4,4'-diterbutyl-2,2'-bipyridine) complex as redox mediator. We found that PbS QDs with average diameter of 3.0 nm are optimal size in terms of efficient charge transfers and light harvesting efficiency for photovoltaic performances. Our study showed that an hole injection from PbS QDs to NiO valence band (VB) is an efficient process even with low injection driving force (0.3 eV) and occurs in 6-10 ns. Furthermore we found that the direct electrolyte reduction (photoinduced electron transfer to the cobalt redox mediator) also occurs in parallel to the hole injection with rate constant of similar magnitude (10-20 ns). In spite of its large driving force, the rate constant of the oxidative quenching of PbS by Co(III) diminishes more steeply than hole injection on NiO when the diameter of PbS increases. This is understood as the consequence of increasing the trap states that limit electron shift. We believe that our detailed findings will advance the future design of QD sensitized photocathodes. © 2017, Royal Society of Chemistry. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at / https://doi.org/10.1039/C7NR03698

    CuSCN Nanowires as Electrodes for p-Type Quantum Dot Sensitized Solar Cells: Charge Transfer Dynamics and Alumina Passivation

    Get PDF
    Quantum dot sensitized solar cells (QDSSCs) are a promising photovoltaic technology due to their low cost and simplicity of fabrication. Most QDSSCs have an n-type configuration with electron injection from QDs into TiO2, which generally leads to unbalanced charge transport (slower hole transfer rate) limiting their efficiency and stability. We have previously demonstrated that p-type (inverted) QD sensitized cells have the potential to solve this problem. Here we show for the first time that electrodeposited CuSCN nanowires can be used as a p-type nanostructured electrode for p-QDSSCs. We demonstrate their efficient sensitization by heavy metal free CuInSxSe2-x quantum dots. Photophysical studies show efficient and fast hole injection from the excited QDs into the CuSCN nanowires. The transfer rate is strongly time dependent but the average rate of 2.5 × 109 s–1 is much faster than in previously studied sensitized systems based on NiO. Moreover, we have developed an original experiment allowing us to calculate independently the rates of charge injection and QD regeneration by the electrolyte and thus to determine which of these processes occurs first. The average QD regeneration rate (1.3 × 109 s–1) is in the same range as the hole injection rate, resulting in an overall balanced charge separation process. To reduce recombination in the sensitized systems and improve their stability, the CuSCN nanowires were coated with thin conformal layers of Al2O3 using atomic layer deposition (ALD) and fully characterized by XPS and EDX. We demonstrate that the alumina layer protects the surface of CuSCN nanowires, reduces charge recombination, and increases the overall charge transfer rate up to 1.5 times depending on the thickness of the deposited Al2O3 layer

    Controlling the emission efficiency of blue-green iridium (iii) phosphorescent emitters and applications in solution-processed organic light-emitting diodes

    Get PDF
    We show that the emission efficiency of blue-green phosphorescent emitters can be controlled through coupling of the excited state to vibrational modes. We controlled this vibrational coupling through choice of different ligands and as a result, complexes with CF3-groups on the ancillary ligand were essentially non-emissive (ΦPL 50%). Emission of the complexes can be drastically improved (30 times higher ΦPL compared to degassed solution for the CF3-containing complexes) by blending them with an inert solid host such as PMMA, which mitigates metal-ligand vibrations. Solution-processed organic light-emitting diodes made from these materials showed efficiency as high as 6.3%
    corecore