2 research outputs found

    Robust Control Strategy for Pneumatic Drive System via Enhanced Nonlinear PID Controller

    Get PDF
    This paper presents the pneumatic positioning system controlled by Enhanced Nonlinear PID (NPID) controller. The characteristic of rate variation of the nonlinear gain that are readily available in NPID controller is utilized to improve the performance of the controller. A Self-regulation Nonlinear Function (SNF) is used to reprocess the error signals with the purpose of continuously generating the values for the rate variation. Subsequently, the controller has successfully been implemented on dynamically changing loads and pressures. The comparison with the other available method such as. NPID and conventional PID are performed and evaluated.  The effectiveness of this method with Dead Zone Compensator (DZC) has also been successfully demonstrated and proven through simulations and experimental studies.DOI:http://dx.doi.org/10.11591/ijece.v4i5.685

    Practical robust control using Self-regulation Nonlinear PID controller for pneumatic positioning system

    Get PDF
    This paper investigates the robustness of the pneumatic positioning system controlled by Self-regulation Nonlinear PID (SNPID) controller. This controller is executed by utilizing the characteristic of rate variation of the nonlinear gain that are readily available in Nonlinear PID (NPID) controller. A Self-regulation Nonlinear Function (SNF) is used to reprocess the error signal with the purpose to generate the value of the rate variation, continuously. Simulation and experimental tests are conducted. The controller is implemented to a variably loads and pressures. The comparison with the other existing method i.e. NPID and conventional PID are performed and evaluated. The effectiveness of SNPID + Dead Zone Compensator (DZC) has been successfully demonstrated and proved through simulation and experimental studie
    corecore