41 research outputs found

    Entangled symmetric states of N qubits with all positive partial transpositions

    Full text link
    From both theoretical and experimental points of view symmetric states constitute an important class of multipartite states. Still, entanglement properties of these states, in particular those with positive partial transposition (PPT), lack a systematic study. Aiming at filling in this gap, we have recently affirmatively answered the open question of existence of four-qubit entangled symmetric states with positive partial transposition and thoroughly characterized entanglement properties of such states [J. Tura et al., Phys. Rev. A 85, 060302(R) (2012)] With the present contribution we continue on characterizing PPT entangled symmetric states. On the one hand, we present all the results of our previous work in a detailed way. On the other hand, we generalize them to systems consisting of arbitrary number of qubits. In particular, we provide criteria for separability of such states formulated in terms of their ranks. Interestingly, for most of the cases, the symmetric states are either separable or typically separable. Then, edge states in these systems are studied, showing in particular that to characterize generic PPT entangled states with four and five qubits, it is enough to study only those that assume few (respectively, two and three) specific configurations of ranks. Finally, we numerically search for extremal PPT entangled states in such systems consisting of up to 23 qubits. One can clearly notice regularity behind the ranks of such extremal states, and, in particular, for systems composed of odd number of qubits we find a single configuration of ranks for which there are extremal states.Comment: 16 pages, typos corrected, some other improvements, extension of arXiv:1203.371

    Four-qubit entangled symmetric states with positive partial transpositions

    Full text link
    We solve the open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.Comment: 5+4 pages, improved version, title slightly modifie

    Separability and distillability in composite quantum systems -a primer-

    Get PDF
    Quantum mechanics is already 100 years old, but remains alive and full of challenging open problems. On one hand, the problems encountered at the frontiers of modern theoretical physics like Quantum Gravity, String Theories, etc. concern Quantum Theory, and are at the same time related to open problems of modern mathematics. But even within non-relativistic quantum mechanics itself there are fundamental unresolved problems that can be formulated in elementary terms. These problems are also related to challenging open questions of modern mathematics; linear algebra and functional analysis in particular. Two of these problems will be discussed in this article: a) the separability problem, i.e. the question when the state of a composite quantum system does not contain any quantum correlations or entanglement and b) the distillability problem, i.e. the question when the state of a composite quantum system can be transformed to an entangled pure state using local operations (local refers here to component subsystems of a given system). Although many results concerning the above mentioned problems have been obtained (in particular in the last few years in the framework of Quantum Information Theory), both problems remain until now essentially open. We will present a primer on the current state of knowledge concerning these problems, and discuss the relation of these problems to one of the most challenging questions of linear algebra: the classification and characterization of positive operator maps.Comment: 11 pages latex, 1 eps figure. Final version, to appear in J. Mod. Optics, minor typos corrected, references adde

    Concurrence classes for an arbitrary multi-qubit state based on positive operator valued measure

    Full text link
    In this paper, we propose concurrence classes for an arbitrary multi-qubit state based on orthogonal complement of a positive operator valued measure, or POVM in short, on quantum phase. In particular, we construct concurrence for an arbitrary two-qubit state and concurrence classes for the three- and four-qubit states. And finally, we construct WmW^{m} and GHZmGHZ^{m} class concurrences for multi-qubit states. The unique structure of our POVM enables us to distinguish different concurrence classes for multi-qubit states.Comment: 8 page

    Concurrence classes for general pure multipartite states

    Full text link
    We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator valued measure on quantum phase. In particular, we construct WmW^{m} class, GHZmGHZ^{m}, and GHZm1GHZ^{m-1} class concurrences for general pure mm-partite states. We give explicit expressions for W3W^{3} and GHZ3GHZ^{3} class concurrences for general pure three-partite states and for W4W^{4}, GHZ4GHZ^{4}, and GHZ3GHZ^{3} class concurrences for general pure four-partite states.Comment: 14 page

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    Effect of Al3+ ions on antiradical activity of extracts from selected spice plants in model systems

    No full text

    Study on the correlation between chemical structure of selected phenolic compounds, present in raw foods, and their salts and their biodegradability

    No full text
    W ostatnich latach związki polifenolowe zyskują coraz większe zainteresowanie konsumentów i wytwórców żywności. Wyniki badań epidemiologicznych wskazują na prozdrowotne efekty spożywania żywności bogatej w polifenole przede wszystkim ze względu na ich właściwości przeciwutleniające i przeciwrodnikowe. Do tej grupy związków należą hydroksylowe pochodne kwasu benzoesowego. W pracy przedstawiono badania podatności na biodegradację soli wybranych fenolokwasów, różniących się ilością oraz położeniem grup hydroksylowych w cząsteczce oraz toksyczność ostrą w stosunku do wybranych organizmów wskaźnikowych. Stopień biodegradacji oceniano na podstawie redukcji wskaźników zanieczyszczeń tj. RWO i BZT. Określono strukturę analizowanych związków posługując się metodami spektroskopowymi (UV-VIS, FT-IR) oraz teoretycznymi obliczeniami kwantowo-mechanicznymi.Nowadays phenols are compounds of an increasing interest of costumers and food producers. Results of epidemiological researches indicate a health promoting effect of eating foods rich in polyphenols, mainly due to their anti-free radicals and antioxidant properties. Hydroxyl derivatives of benzoic acid belong to this group of compounds. In this paper investigations of biodegradability and the acute toxicity toward indicator organisms of selected phenolic acids differing in the number and location of hydroxyl groups in the molecule and their salts were presented. The degree of biodégradation was determined based on reduction of pollution indicators such as DOC and BOD. The molecular structures of studied compounds were determined by spectroscopic method (UV-VIS, FT-IR) and using quantum-mechanical calculations

    The comparison of the chemical composition and antioxidant properties of extracts from barley and wheat grasses

    No full text
    corecore