2,760 research outputs found

    Semi-classical twists for sl(3) and sl(4) boundary r-matrices of Cremmer-Gervais type

    Full text link
    We obtain explicit formulas for the semi-classical twists deforming the coalgebraic structure of U(sl(3)) and U(sl(4)). In rank 2 and 3 the corresponding universal R-matrices quantize the boundary r-matrices of Cremmer-Gervais type defining Lie Frobenius structures on the maximal parabolic subalgebras in sl(n)

    Twists in U(sl(3)) and their quantizations

    Full text link
    The solution of the Drinfeld equation corresponding to the full set of different carrier subalgebras in sl(3) are explicitly constructed. The obtained Hopf structures are studied. It is demonstrated that the presented twist deformations can be considered as limits of the corresponding quantum analogues (q-twists) defined for the q-quantized algebras.Comment: 31 pages, Latex 2e, to be published in Journ. Phys. A: Math. Ge

    Eigenphase preserving two-channel SUSY transformations

    Full text link
    We propose a new kind of supersymmetric (SUSY) transformation in the case of the two-channel scattering problem with equal thresholds, for partial waves of the same parity. This two-fold transformation is based on two imaginary factorization energies with opposite signs and with mutually conjugated factorization solutions. We call it an eigenphase preserving SUSY transformation as it relates two Hamiltonians, the scattering matrices of which have identical eigenphase shifts. In contrast to known phase-equivalent transformations, the mixing parameter is modified by the eigenphase preserving transformation.Comment: 16 pages, 1 figur

    The loss of anisotropy in MgB2 with Sc substitution and its relationship with the critical temperature

    Full text link
    The electrical conductivity anisotropy of the sigma-bands is calculated for the (Mg,Sc)B2 system using a virtual crystal model. Our results reveal that anisotropy drops with relatively little scandium content (< 30%); this behaviour coincides with the lowering of Tc and the reduction of the Kohn anomaly. This anisotropy loss is also found in the Al and C doped systems. In this work it is argued that the anisotropy, or 2D character, of the sigma-bands is an important parameter for the understanding of the high Tc found in MgB2

    Darboux transformations of coherent states of the time-dependent singular oscillator

    Full text link
    Darboux transformation of both Barut-Girardello and Perelomov coherent states for the time-dependent singular oscillator is studied. In both cases the measure that realizes the resolution of the identity operator in terms of coherent states is found and corresponding holomorphic representation is constructed. For the particular case of a free particle moving with a fixed value of the angular momentum equal to two it is shown that Barut-Giriardello coherent states are more localized at the initial time moment while the Perelomov coherent states are more stable with respect to time evolution. It is also illustrated that Darboux transformation may keep unchanged this different time behavior.Comment: 13 page

    Generalization of the Darboux transformation and generalized harmonic oscillators

    Full text link
    The Darbroux transformation is generalized for time-dependent Hamiltonian systems which include a term linear in momentum and a time-dependent mass. The formalism for the NN-fold application of the transformation is also established, and these formalisms are applied for a general quadratic system (a generalized harmonic oscillator) and a quadratic system with an inverse-square interaction up to N=2. Among the new features found, it is shown, for the general quadratic system, that the shape of potential difference between the original system and the transformed system could oscillate according to a classical solution, which is related to the existence of coherent states in the system

    Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

    Full text link
    The displacement noise in the test mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX

    Entangled Quantum State Discrimination using Pseudo-Hermitian System

    Full text link
    We demonstrate how to discriminate two non-orthogonal, entangled quantum state which are slightly different from each other by using pseudo-Hermitian system. The positive definite metric operator which makes the pseudo-Hermitian systems fully consistent quantum theory is used for such a state discrimination. We further show that non-orthogonal states can evolve through a suitably constructed pseudo-Hermitian Hamiltonian to orthogonal states. Such evolution ceases at exceptional points of the pseudo-Hermitian system.Comment: Latex, 9 pages, 1 figur

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure

    Quadratic pseudosupersymmetry in two-level systems

    Full text link
    Using the intertwining relation we construct a pseudosuperpartner for a (non-Hermitian) Dirac-like Hamiltonian describing a two-level system interacting in the rotating wave approximation with the electric component of an electromagnetic field. The two pseudosuperpartners and pseudosupersymmetry generators close a quadratic pseudosuperalgebra. A class of time dependent electric fields for which the equation of motion for a two level system placed in this field can be solved exactly is obtained. New interesting phenomenon is observed. There exists such a time-dependent detuning of the field frequency from the resonance value that the probability to populate the excited level ceases to oscillate and becomes a monotonically growing function of time tending to 3/4. It is shown that near this fixed excitation regime the probability exhibits two kinds of oscillations. The oscillations with a small amplitude and a frequency close to the Rabi frequency (fast oscillations) take place at the background of the ones with a big amplitude and a small frequency (slow oscillations). During the period of slow oscillations the minimal value of the probability to populate the excited level may exceed 1/2 suggesting for an ensemble of such two-level atoms the possibility to acquire the inverse population and exhibit lasing properties.Comment: 5 figure
    • …
    corecore