134 research outputs found

    A rapid survival assay to measure drug-induced cytotoxicity and cell cycle effects

    Get PDF
    We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional clonogenic survival assay, considered the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained contain additional information on cell cycle effects of the drug treatment. Cell survival is obtained from a quantitative comparison of proliferation between drug-treated and untreated cells. During the assay, cells are treated with a drug and, following a recovery period, allowed to proliferate in the presence of bromodeoxyuridine (BrdU). Cells that synthesize DNA in the presence of BrdU exhibit quenched Hoechst fluorescence, easily detected by flow cytometry; quenching is used to determine relative proliferation in treated vs. untreated cells. Finally, this assay can be used in high-throughput format to simultaneously screen multiple cell lines and drugs for accurate measurements of cell survival and cell cycle effects after drug treatment.National Institutes of Health (U.S.) (U54-CA112967)National Institutes of Health (U.S.) (R01-CA055042)National Institutes of Health (U.S.) (P30-ES002109)National Institutes of Health (U.S.) (P30-CA014051)Massachusetts Institute of Technology (Merck Fellowship

    Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research

    Get PDF
    Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic

    Alkylation-induced colon tumorigenesis in mice deficient in the Mgmt and Msh6 proteins

    Get PDF
    O[superscript 6]-methylguanine DNA methyltransferase (MGMT) suppresses mutations and cell death that result from alkylation damage. MGMT expression is lost by epigenetic silencing in a variety of human cancers including nearly half of sporadic colorectal cancers, suggesting that this loss maybe causal. Using mice with a targeted disruption of the Mgmt gene, we tested whether Mgmt protects against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF), against AOM and dextran sulfate sodium (DSS)-induced colorectal adenomas and against spontaneous intestinal adenomas in Apc[superscript Min] mice. We also examined the genetic interaction of the Mgmt null gene with a DNA mismatch repair null gene, namely Msh6. Both Mgmt and Msh6 independently suppress AOM-induced ACF, and combination of the two mutant alleles had a multiplicative effect. This synergism can be explained entirely by the suppression of alkylation-induced apoptosis when Msh6 is absent. In addition, following AOM+DSS treatment Mgmt protected against adenoma formation to the same degree as it protected against AOM-induced ACF formation. Finally, Mgmt deficiency did not affect spontaneous intestinal adenoma development in Apc[superscript Min/+] mice, suggesting that Mgmt suppresses intestinal cancer associated with exogenous alkylating agents, and that endogenous alkylation does not contribute to the rapid tumor development seen in Apc[superscript Min/+] mice.National Institutes of Health (U.S.) (grant ES02109)National Institutes of Health (U.S.) (grant CA75576)American Cancer Society (Research Professor

    The interaction between ALKBH2 DNA repair enzyme and PCNA is direct, mediated by the hydrophobic pocket of PCNA and perturbed in naturally-occurring ALKBH2 variants

    Get PDF
    Human AlkB homolog 2 (ALKBH2) is a DNA repair enzyme that catalyzes the direct reversal of DNA methylation damage through oxidative demethylation. While ALKBH2 colocalizes with proliferating cell nuclear antigen (PCNA) in DNA replication foci, it remains unknown whether these two proteins alone form a complex or require additional components for interaction. Here, we demonstrate that ALKBH2 can directly interact with PCNA independent from other cellular factors, and we identify the hydrophobic pocket of PCNA as the key domain mediating this interaction. Moreover, we find that PCNA association with ALKBH2 increases significantly during DNA replication, suggesting that ALKBH2 forms a cell-cycle dependent complex with PCNA. Intriguingly, we show that an ALKBH2 germline variant, as well as a variant found in cancer, display altered interaction with PCNA. Our studies reveal the ALKBH2 binding interface of PCNA and indicate that both germline and somatic ALKBH2 variants could have cellular effects on ALKBH2 function in DNA repair.Swiss National Science Foundation (31003A_133100/1)National Institutes of Health (U.S.) (grant CA055042)National Institutes of Health (U.S.) (grant ES002109)Universität Züric

    PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration

    Get PDF
    Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type andAag-transgenic (AagTg) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT andAagTgmice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. InAagTgmale and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much likeParp1gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT andAagTgmice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.National Institutes of Health (U.S.) (Award R01- CA075576)National Institutes of Health (U.S.) (Award R01-CA055042)National Institutes of Health (U.S.) (Award P30-ES02109)National Institutes of Health (U.S.) (Award P30- CA014051

    Microfluidic genome-wide profiling of intrinsic electrical properties in Saccharomyces cerevisiae

    Get PDF
    Methods to analyze the intrinsic physical properties of cells – for example, size, density, rigidity, or electrical properties – are an active area of interest in the microfluidics community. Although the physical properties of cells are determined at a fundamental level by gene expression, the relationship between the two remains exceptionally complex and poorly characterized, limiting the adoption of intrinsic separation technologies. To improve our current understanding of how a cell's genotype maps to a measurable physical characteristic and quantitatively investigate the potential of using these characteristics as biomarkers, we have developed a novel screen that combines microfluidic cell sorting with high-throughput sequencing and the haploid yeast deletion library to identify genes whose functions modulate one such characteristic – intrinsic electrical properties. Using this screen, we are able to establish a high-content electrical profile of the haploid yeast gene deletion strains. We find that individual genetic deletions can appreciably alter the electrical properties of cells, affecting [approximately] 10% of the 4432 gene deletion strains screened. Additionally, we find that gene deletions affecting electrical properties in specific ways (i.e. increasing or decreasing effective conductivity at higher or lower electric field frequencies) are strongly associated with an enriched subset of fundamental biological processes that can be traced to specific pathways and complexes. The screening approach demonstrated here and the attendant results are immediately applicable to the intrinsic separations community.Singapore-MIT AllianceNational Science Foundation (U.S.) (NSF IDBR grant DBI-0852654)National Institutes of Health (U.S.) (NIH grant EB005753

    The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA

    Get PDF
    BACKGROUND: Upon exposure to agents that damage DNA, Saccharomyces cerevisiae undergo widespread reprogramming of gene expression. Such a vast response may be due not only to damage to DNA but also damage to proteins, RNA, and lipids. Here the transcriptional response of S. cerevisiae specifically induced by DNA damage was discerned by exposing S. cerevisiae to a panel of three "radiomimetic" enediyne antibiotics (calicheamicin γ(1)(I), esperamicin A1 and neocarzinostatin) that bind specifically to DNA and generate varying proportions of single- and double-strand DNA breaks. The genome-wide responses were compared to those induced by the non-selective oxidant γ-radiation. RESULTS: Given well-controlled exposures that resulted in similar and minimal cell death (~20–25%) across all conditions, the extent of gene expression modulation was markedly different depending on treatment with the enediynes or γ-radiation. Exposure to γ-radiation resulted in more extensive transcriptional changes classified both by the number of genes modulated and the magnitude of change. Common biological responses were identified between the enediynes and γ-radiation, with the induction of DNA repair and stress response genes, and the repression of ribosomal biogenesis genes. Despite these common responses, a fraction of the response induced by gamma radiation was repressed by the enediynes and vise versa, suggesting that the enediyne response is not entirely "radiomimetic." Regression analysis identified 55 transcripts with gene expression induction associated both with double- or single-strand break formation. The S. cerevisiae "DNA damage signature" genes as defined by Gasch et al. [1] were enriched among regulated transcripts associated with single-strand breaks, while genes involved in cell cycle regulation were associated with double-strand breaks. CONCLUSION: Dissection of the transcriptional response in yeast that is specifically signaled by DNA strand breaks has identified that single-strand breaks provide the signal for activation of transcripts encoding proteins involved in the DNA damage signature in S. cerevisiae, and double-strand breaks signal changes in cell cycle regulation genes

    Frameshift Mutagenesis and Microsatellite Instability Induced by Human Alkyladenine DNA Glycosylase

    Get PDF
    Human alkyladenine DNA glycosylase (hAAG) excises alkylated purines, hypoxanthine, and etheno bases from DNA to form abasic (AP) sites. Surprisingly, elevated expression of hAAG increases spontaneous frameshift mutagenesis. By random mutagenesis of eight active site residues, we isolated hAAG-Y127I/H136L double mutant that induces even higher rates of frameshift mutation than does the wild-type hAAG; the Y127I mutation accounts for the majority of the hAAG-Y127I/H136L-induced mutator phenotype. The hAAG-Y127I/H136L and hAAG-Y127I mutants increased the rate of spontaneous frameshifts by up to 120-fold in S. cerevisiae and also induced high rates of microsatellite instability (MSI) in human cells. hAAG and its mutants bind DNA containing one and two base-pair loops with significant affinity, thus shielding them from mismatch repair; the strength of such binding correlates with their ability to induce the mutator phenotype. This study provides important insights into the mechanism of hAAG-induced genomic instability.National Institutes of Health (U.S.) (Grant CA055042)National Institutes of Health (U.S.) (Grant CA115802)National Institutes of Health (U.S.) (Grant ES02109

    Repair of endogenous DNA base lesions modulate lifespan in mice

    Get PDF
    The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O[superscript 6]-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm[superscript −/−] mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.National Institutes of Health (U.S.) (Grant R01-CA075576)National Institutes of Health (U.S.) (Grant R01-ES022872)National Institutes of Health (U.S.) (Grant R01-CA149261)National Institutes of Health (U.S.) (Grant P30-ES002109

    Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney

    Get PDF
    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag[superscript −/−] mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag[superscript −/−] mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag[superscript −/−] liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.National Institutes of Health (U.S.) (Grant R01-CA055042)National Institutes of Health (U.S.) (Grant R01-CA149261)National Institutes of Health (U.S.) (Grant P30-ES02109)Ellison Medical Foundatio
    • …
    corecore