2 research outputs found

    Nutrition, Genetic Variation and Male Fertility

    Get PDF
    Infertility affects nearly 50 million couples worldwide, with 40−50% of cases having a male factor component. It is well established that nutritional status impacts reproductive development, health and function, although the exact mechanisms have not been fully elucidated. Genetic variation that affects nutrient metabolism may impact fertility through nutrigenetic mechanisms. This review summarizes current knowledge on the role of several dietary components (vitamins A, B12, C, D, E, folate, betaine, choline, calcium, iron, caffeine, fiber, sugar, dietary fat, and gluten) in male reproductive health. Evidence of gene-nutrient interactions and their potential effect on fertility is also examined. Understanding the relationship between genetic variation, nutrition and male fertility is key to developing personalized, DNA-based dietary recommendations to enhance the fertility of men who have difficulty conceiving

    The Effects of Commercial Freezing on Vitamin Concentrations in Spinach (Spinacia oleracea)

    No full text
    Commercial food processing has had a significant impact on reducing food spoilage and increasing accessibility to nutrient-dense vegetables. The commercial freezing process, in particular, has given producers the ability to store vegetables with minimized risk of microbial and enzymatic spoilage. Despite the effectiveness of freezing as a preservation method, there is evidence that pre-freezing procedures and prolonged storage can reduce the concentration of vitamins present within certain vegetables. Spinach, one of the most widely produced and consumed vegetables, is particularly susceptible to nutrient loss during the commercial freezing process due to its large surface area and high mineral content. This review summarizes the known effects of the freezing process on hydrophilic and lipophilic vitamins including vitamin C, thiamin, riboflavin, β-carotene, and α-tocopherol. There are two key mechanisms that lead to decreased vitamin concentrations, with the first being attributed to pre-freezing processes including washing and blanching which favours the leaching of hydrophilic vitamins. The second mechanism of vitamin loss is attributed to residual enzymatic activity during storage, where the degree of residual activity can be partially attributed to differences in blanching protocols and freezing practices. Understanding the mechanisms and extent of vitamin loss that the commercial freezing process imparts on leafy green vegetables can help inform future research on improved food processing methods that minimize nutrient loss. Implementing procedures that maintain nutrient retention in frozen vegetables has the potential to assist individuals in achieving their recommended daily intakes of micronutrients
    corecore