19 research outputs found
Terrestrial ecological risk analysis via dietary exposure at uranium mine sites in the Grand Canyon watershed (Arizona, USA)
The U.S. Department of the Interior recently included uranium (U) on a list of mineral commodities that are considered critical to economic and national security. The uses of U for commercial and residential energy production, defense applications, medical device technologies, and energy generation for space vehicles and satellites are known, but the environmental impacts of uranium extraction are not always well quantified. We conducted a screening-level ecological risk analysis based on exposure to miningrelated elements via diets and incidental soil ingestion for terrestrial biota to provide context to chemical characterization and exposures at breccia pipe U mines in northern Arizona. Relative risks, calculated as hazard quotients (HQs), were generally low for all biological receptor models. Our models screened for risk to omnivores and insectivores (HQs\u3e1) but not herbivores and carnivores. Uranium was not the driver of ecological risk; arsenic, cadmium, copper, and zinc were of concern for biota consuming ground-dwelling invertebrates. Invertebrate species composition should be considered when applying these models to other mining locations or future sampling at the breccia pipe mine sites. Dietary concentration thresholds (DCTs) were also calculated to understand food concentrations that may lead to ecological risk. The DCTs indicated that critical concentrations were not approached in our model scenarios, as evident in the very low HQs for most models. The DCTs may be used by natural resource and land managers as well as mine operators to screen or monitor for potential risk to terrestrial receptors as mine sites are developed and remediated in the future
Recommendations to improve wildlife exposure estimation for development of soil screening and cleanup values
An integral component in the development of media-specific values for the ecological risk assessment of chemicals is the derivation of safe levels of exposure for wildlife. Although the derivation and subsequent application of these values can be used for screening purposes, there is a need to identify the threshold for effects when making remedial decisions during site-specific assessments. Methods for evaluation of wildlife exposure are included in the US Environmental Protection Agency (USEPA) ecological soil screening levels (Eco-SSLs), registration, evaluation, authorization, and restriction of chemicals (REACH), and other risk-based soil assessment approaches. The goal of these approaches is to ensure that soil-associated contaminants do not pose a risk to wildlife that directly ingest soil, or to species that may be exposed to contaminants that persist in the food chain. These approaches incorporate broad assumptions in the exposure and effects assessments and in the risk characterization process. Consequently, thresholds for concluding risk are frequently very low with conclusions of risk possible when soil metal concentrations fall in the range of natural background. A workshop held in September, 2012 evaluated existing methods and explored recent science about factors to consider when establishing appropriate remedial goals for concentrations of metals in soils. A Foodweb Exposure Workgroup was organized to evaluate methods for quantifying exposure of wildlife to soil-associated metals through soil and food consumption and to provide recommendations for the development of ecological soil cleanup values (Eco-SCVs) that are both practical and scientifically defensible. The specific goals of this article are to review the current practices for quantifying exposure of wildlife to soil-associated contaminants via bioaccumulation and trophic transfer, to identify potential opportunities for refining and improving these exposure estimates, and finally, to make recommendations for application of these improved models to the development of site-specific remedial goals protective of wildlife. Although the focus is on metals contamination, many of the methods and tools discussed are also applicable to organic contaminants. The conclusion of this workgroup was that existing exposure estimation models are generally appropriate when fully expanded and that methods are generally available to develop more robust site-specific exposure estimates. Improved realism in site-specific wildlife Eco-SCVs could be achieved by obtaining more realistic estimates for diet composition, bioaccumulation, bioavailability and/or bioaccessibility, soil ingestion, spatial aspects of exposure, and target organ exposure. These components of wildlife exposure estimation should be developed on a site-, species-, and analyte-specific basis to the extent that the expense for their derivation is justified by the value they add to Eco-SCV development
Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals
Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts
Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres
Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
Backsheet and Module Durability and Performance and Comparison of Accelerated Testing to Long Term Fielded Modules
The composition, properties and construction of a backsheet has a direct bearing on its functional performance in a photovoltaic module. Typically, the performance properties are examined under fixed stress conditions and the performance and stability of backsheets to these stress conditions are studied. But exposure to the outdoor environment involves stresses acting sequentially and simultaneously. The effect of these stresses should be applied to modules as well as components to adequately assess their impact on performance and durability.
To better understand the expected performance in the field, we have examined established and new backsheet constructions and characterized their initial properties and durability under the usual accelerated test stressors (heat, humidity, UV, temperature cycling) and under conditions where these stressors are applied sequentially or simultaneously. We have also investigated performance of materials under new stress conditions that may better simulate the operation of a PV module in the outdoor environment. We have applied weathering conditions based on the expected life of the product under various climates to temperature and UV exposure using albedo exposure from the back of the module and using transmitted UV light through the package. Performance and durability of modules exposed to accelerated use conditions under a resistive load and tracked its PV performance and safety has also been investigated.
The performance and durability of modules from the field after long outdoor exposure are further examined by non-destructive and destructive analysis. Backsheet constructions are identified and module performance is assessed using non-destructive methods (IV, EL, insulation, color, visual assessment, ATR-IR spectroscopy). Destructive assessment employing sampling methods and a wide range of analytical methods to better understand chemical and physical changes is also described.JRC.F.7-Renewable Energ