333 research outputs found

    Research productivity on COVID-19: A Bibliometric approach

    Get PDF
    The study aimed to explore the perspective of COVID-19 publications across the globe. Further, attempts were also made to find out the most productive country, author, and institute in publishing literature on COVID-19. The data related study was retrieved from SCOPUS database. Various search strategies were used to retrieve publications on COVID-19 published between 1st December 2019 and 22nd June 2020. A total of 19,991 publications on COVID-19 were retrieved from the Scopus database. Further, it was found that Huazhong University of Science and Technology, China has produced 422 publications and received 5624 citations with an average citation of 13.327 per publication. BMJ Clinical Research Ed published 534 (1.61%) articles. Among the most productive authors, Wiwanitkit, Viroj from Hainan Medical University, China stands in the first place with 73 publications followed by Mahase, E. from the British Medical Journal, UK (52 publications) and Iacobucci, Gareth (48 publications). The study provided a relatively objective reference for peer scientists, national regimes, and the global health system. The findings of the study will definitely help the institutions as well as authors to get an opportunity to collaborate with regional, national and international research institutions and scientists

    Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley

    Get PDF
    Nitrogen is an essential nutrient for plants, but crop plants are inefficient in the acquisition and utilization of applied nitrogen. This often results in producers over applying nitrogen fertilizers, which can negatively impact the environment. The development of crop plants with more efficient nitrogen usage is, therefore, an important research goal in achieving greater agricultural sustainability. We utilized genetically modified rice lines overexpressing a barley alanine aminotransferase (HvAlaAT) to help characterize pathways which lead to more efficient use of nitrogen. Under the control of a stress-inducible promoter OsAnt1, OsAnt1:HvAlaAT lines have increased above-ground biomass with little change to both nitrate and ammonium uptake rates. Based on metabolic profiles, carbon metabolites, particularly those involved in glycolysis and the tricarboxylic acid (TCA) cycle, were significantly altered in roots of OsAnt1:HvAlaAT lines, suggesting higher metabolic turnover. Moreover, transcriptomic data revealed that genes involved in glycolysis and TCA cycle were upregulated. These observations suggest that higher activity of these two processes could result in higher energy production, driving higher nitrogen assimilation, consequently increasing biomass production. Other potential mechanisms contributing to a nitrogen-use efficient phenotype include involvements of phytohormonal responses and an alteration in secondary metabolism. We also conducted basic growth studies to evaluate the effect of the OsAnt1:HvAlaAT transgene in barley and wheat, which the transgenic crop plants increased seed production under controlled environmental conditions. This study provides comprehensive profiling of genetic and metabolic responses to the over-expression of AlaAT and unravels several components and pathways which contribute to its nitrogen-use efficient phenotype

    Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement

    Get PDF
    We measure the mechanical thermal noise of soft silicon atomic force microscopy cantilevers. Using an interferometric setup, we have a resolution down to 1E-14 m/rtHz on a wide spectral range (3 Hz to 1E5 Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectrums for uncoated cantilevers versus 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model

    Community based conservation as a tool to conserve freshwater fish in Sri Lanka: Evidence from Puntius bandula conservation programme

    Get PDF
    Puntius bandula is an endemic fish restricted to two unprotected small streams at Galapitamada. The streams are surrounded by habitats subjected to frequent anthropogenic threats such as destruction of floral assemblages of the catchment and stream banks, releasing of agrochemicals, fertilizers and kitchen waste, artificial constructions of the stream bank, narrowing of the stream and collapsing of the stream bank due to expanding paddy cultivations and illegal collection of fish by unauthorized parties. The population size of P. bandula has declined rapidly during the past two decades making it a Critically Endangered species. The main aim of this programme was to ensure long term survival of this species through a participatory conservation approach. First, a standardized questionnaire survey was done to determine the degree of awareness, the willingness of the community to conserve P. bandula, obtain a profile of the community and to introduce the objectives of the programme. Further, awareness was raised in the community through presentations and discussions held at monthly community meetings. An environment protection committee was established and an action plan was drawn up. Under this; two community awareness workshops, transect walk, school environment programmes and monthly community meetings were conducted. Further, several communication tools such as calendars, a brochure, a time table, powerpoint presentations, video clips and sign boards were produced. The degree of awareness of the community was increased up to 85% after the awareness programme from 54%. Also a tree planting campaign was conducted with the community to enhance the habitat of P. bandula. Finally a small stock of adult P. bandula (15 females and 5 males) was translocated to a new locality as a participatory approach to establish a second population and 10 adults and 7 fry were observed in the new locality three months after the translocation. It can be concluded that, this approach is useful in conserving endemic freshwater fish species in Sri Lanka by minimizing threats via self awareness, since most of them are located outside of the protected area net work and subjected to anthropogenic threats

    ERCC1 is a prognostic biomarker in locally advanced head and neck cancer: results from a randomised, phase II trial

    Get PDF
    Background:Cisplatin-radiotherapy is a preferred standard for locally advanced, head and neck squamous cell carcinoma (HNSCC). However, the cisplatin-attributable survival benefit is small and toxicity substantial. A biomarker of cisplatin resistance could guide treatment selection and spare morbidity. The ERCC1-XPF nuclease is critical to DNA repair pathways resolving cisplatin-induced lesions.Methods:In a phase II trial, patients with untreated Stage III-IVb HNSCC were randomised to cisplatin-radiotherapy with/without erlotinib. Archived primary tumours were available from 90 of 204 patients for this planned substudy. Semi-quantitative ERCC1 protein expression (H-score) was determined using the FL297, 4F9, and 8F1 antibodies. The primary analysis evaluated the relationship between continuous ERCC1 protein expression and progression-free survival (PFS). Secondary analyses included two pre-specified ERCC1 cutpoints and performance in HPV-associated disease.Results:Higher ERCC1 expression was associated with inferior PFS, as measured by the specific antibodies FL297 (HR=2.5, 95% CI=1.1–5.9, P=0.03) and 4F9 (HR=3.0, 95% CI=1.2–7.8, P=0.02). Patients with increased vs decreased/normal ERCC1 expression experienced inferior PFS (HR=4.8 for FL297, P=0.003; HR=5.5 for 4F9, P=0.007). This threshold remained prognostic in HPV-associated disease.Conclusion:ERCC1-XPF protein expression by the specific FL297 and 4F9 antibodies is prognostic in patients undergoing definitive cisplatin-radiotherapy for HNSCC, irrespective of HPV status

    Mitochondrial 2,4-dienoyl-CoA Reductase Deficiency in Mice Results in Severe Hypoglycemia with Stress Intolerance and Unimpaired Ketogenesis

    Get PDF
    The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state

    Classifying RNA-Binding Proteins Based on Electrostatic Properties

    Get PDF
    Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p
    corecore