24 research outputs found

    To the technique of determination of phase matrices of high-level clouds with a polarization lidar

    Get PDF
    A comparative analysis of errors of two methods for the determination of phase matrices of high-level clouds with a ground-based lidar is performed

    Problem of data interpretation of laser polarization sensing of high-level clouds on the basis of theoretically calculated phase matrices of backscattering by monodisperse ice crystals

    Get PDF
    A technique for determining the microstructure parameters of high-level clouds on the basis of joint analysis of experimental and theoretical data is described. Results of the experiments on atmosphere laser sensing and theoretical calculations of light scattering by spatially oriented ice crystals are shown

    Long path DOAS measurements of atmospheric pollutants concentration

    Get PDF
    A differential optical absorption spectroscopy gas-analyzer consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source. In order to record the spectra, a monochrometer with a grating and photodiode array was used. Gas analyzer spectral data bank includes more than 35 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. As a result of experiments time series of concentrations of gases polluting the atmosphere were trace measured. Minimally detected concentration on pathlength 480 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk city are presented

    Using satellite radiometric and ground based lidar measurements for detection of cirrus clouds, containing ensembles of preferred oriented ice particles

    Get PDF
    In this paper present an example of joint analysis of the data of high-level cloud sensing with a ground based polarization lidar of Tomsk State University and satellite radiometer MODIS

    Photon mean free path in the metal nanoparticle system

    Get PDF
    In the paper comparative evaluation of the photon mean free path in the system of metal nanoparticles and dielectric matrix is performed by means of numerical simulations. As a material of nanoparticles both metals (Ag, Cu) in which the frequency of plasmon resonance falls in the range under study and metals (Al, Ni) in which the plasmon resonance frequency is far from the investigated range have been used. The research has shown that for the studied metals the media based on Al nanoparticles satisfy best the Ioffe-Regel criterion for photons of visible wavelength range

    The dispersion of surface plasmon-polaritons in the metal-nanocomposite system

    Get PDF
    The article presents the results of computing simulation of surface plasmon-polaritons’ dispersive properties at the interface between «a composite medium based on Al, Ag, Ni, Cu nanoparticles and a substrate made of the same metals» in the visible wavelength band. It is shown that the surface plasmon-polaritons’ dispersive properties in these structures can be changed in a wide range by altering the nanoparticles concentration

    Software for processing of experimental data on polarization laser sensing of high-level clouds

    Get PDF
    Methodology for determination of the optical and geometric characteristics of clouds is described. Problems of processing data obtained in experiments on polarization laser sensing of the atmosphere are discussed. Technique for reduction of the phase matrices of cirrus obtained with the high-altitude polarization lidar developed at National Research Tomsk State University to the symmetry plane affixed to the preferred orientation of ice crystals in cirrus is described. The experimental data are compared with the data of numerical modeling of phase matrices in the physical optics approximation and meteorological conditions over the lidar at cirrus altitudes. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    ERA5 reanalysis for the data interpretation on polarization laser sensing of high-level clouds

    Get PDF
    Interpreting the results of a high-level clouds (HLCs) lidar study requires a comparison with the vertical profiles of meteorological quantities. There are no regular radiosonde measurements of vertical profiles of meteorological quantities in Tomsk. The nearest aerological stations are several hundred kilometers away from the lidar and perform radiosonde measurements only a few times a day, whereas lidar experiments are performed continuously throughout the day. To estimate meteorological conditions at the HLC altitudes, we propose to use the ERA5 reanalysis. Its reliability was tested by comparing with the data from five aerological stations within a radius of 500 km around Tomsk. A labeled database of the lidar, radiosonde, and ERA5 data (2016–2020) for isobaric levels 1000–50 hPa was created. The temperature reconstruction error over the entire altitude range was characterized by an RMSE of 0.8–2.8 ◦C, bias of 0–0.9, and Corr ~1. The accuracy of the relative vertical profiles (RMSE 25–40%, Bias 10–22%, and Corr <0.7) and specific humidity (RMSE 0.2–1.2 g/kg, Bias ~0 g/kg, and Corr ~0) at the HLC altitudes were unsatisfying. The ERA5 data on wind direction and speed for the HLC altitudes were promising

    >

    No full text

    To the technique of determination of phase matrices of high-level clouds with a polarization lidar

    No full text
    A comparative analysis of errors of two methods for the determination of phase matrices of high-level clouds with a ground-based lidar is performed
    corecore