1 research outputs found

    Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses

    Full text link
    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have been recently approved by the Federal Communications Commission for a number of various applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite difference-time domain method (FDTD), has been extended here into a full three-dimensional computation. To account for the UWB frequency range, a geometrical resolution of the exposed sample was 0.25mm0.25 mm, and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the QQ-factor of the resonator.Comment: 15 pages, 8 figure
    corecore