40 research outputs found
Aerodynamics of Mars entry probe-lander configurations at a Mach number of 10
Aerodynamics of Mars entry probe lander configurations at Mach 1
Hazard criteria for wake vortex encounters
A piloted, motion-base simulation was conducted to evaluate the ability of simulators to produce realistic vortex encounters and to develop criteria to define hazardous encounters. Evaluation of the simulation by pilots experienced in vortex encounters confirmed the capability of the simulator to realistically reproduce wake vortex encounters. A boundary for encounter hazard based on subjective pilot opinion was identified in terms of maximum bank angle. For encounter altitudes from 200 to 500 ft (61.0 to 152.4 m), tentative hazard criteria established for visual flight conditions indicated that the acceptable upset magnitude increased nearly linearly with increasing altitude. The data suggest that the allowable upsets under instrument conditions no greater than 50 percent of that allowable under visual conditions
Wake vortex encounter hazards criteria for two aircraft classes
An investigation was conducted using a piloted, motion-base simulator to determine wake vortex hazard criteria for two classes of jet transport aircraft. A light business jet and a large multiengine jet transport were represented respectively. The hazard boundaries were determined in terms of the maximum bank angle due to the vortex encounter. Upsets as small as 7 deg in bank angle were considered to be hazardous at breakout altitude (200 ft (61.0 m)) for Instrument Flight Rule (IFR) and at 50 ft (15.2 m) for Visual Flight Rule (VFR) for both aircraft classes. Proximity to the ground was the primary reason for a hazardous rating. This was reflected in the reduction in the maximum bank angle at the hazard boundary and in more consistent ratings as altitude was decreased
Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data
Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required
Extreme events and predictability of catastrophic failure in composite materials and in the Earth
Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a âblack swanâ. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify âcharacteristicâ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragonâs domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models
At the Crossroads of Sustainability: The Natural Recompositioning of Architecture
It is widely acknowledged that the mantra of sustainability has triggered a fundamental reversal in the core of design practice: If the original purpose of architecture was to protect humans from the destructive actions of nature,today it should protect nature from the damaging actions of humans. But sustainable design is far from being a coherent body of fully totalized ideas:it has a broad spectrum of disputing interpretations that oscillate between the
deterministic models of energy control and technological efficiencies, and the moralistic and romantic approaches that attempt to see in nature and natural processes a fundamental way to de-escalate the global urban footprint and its associated patterns of consumption.
However, mainstream green design has been evolving by progressively absorbing the narrative of deep ecology. Nature has been being integrated into architecture literally, by inserting vegetation onto buildings; digitally, by bringing environmental data into the design process (climate records, wind streams, sun rotation and air flows are computed, modelled and effectually shape architectures), and transcendentally, by claiming that sustainable architecture nurtures âthe existing and evolving connections between spiritual and
material consciousness.â The acknowledgement of the inexorable affiliation between architecture and the environment is, of course, not exactly new. What
is distinctive today is the reification of the role of nature in architecture as an ideological stance, now totally intertwined with state-of-art data processing
and the market-driven tools brought by Natural Capitalism.
This paper will examine emblematic âgreenâ buildings produced by leading architects such as Pelli Clarke Pelli, William McDonough, Stefano Boeri,
Norman Foster and BIG in the light of Tim Mortonâs, Slavoj Zizek and Bruno Latourâs critique of nature. It will illustrate how, despite being able to successfully
forge new creative freedoms by exploring hybridizations between the domains of design and science, sustainabilityâs self-righteous ânaturalisticâ narrative is enabling a vision of the architect as an âexpert managerâ
focused on producing projects of ecologic âbeautificationâ while assumed to be âsaving the world,â effectively depoliticizing the architectural practice.
Nevertheless, these examples attest that there is a vast and fertile field of ideas to be explored and in this regard it is important to underline that we are still
in the embryonic outset of the engagement of architecture with sustainability
Positive and negative feedback in the earthquake cycIe: the role of pore fluids on states of criticality in the crust
Fluids exert a strong physical and chemical control on local processes of rock fracture and friction. For example they may accelerate fracture by stress corrosion reactions or the development of overpressure (a form of positive feedback), or retard fracture by time-dependent stress relaxation or dilatant hardening (negative feed-back), thereby introducing a variable degree of local force conservation into the process. In particular the valve action of dynamic faulting may be important in tuning the Earth to a metastable state of incipient failure on all scales over several cycles, similar to current models of Self-Organised Criticality (SOC) as a paradigm for eartiquakes However laboratory results suggest that ordered fluctuations about this state may occur in a single cycle due to non conservative processes involving fluids which have the potential to be recognised, at least in the short term, in the scaling properties of earthquake statistics. Here we describe a 2-D cellular automaton which uses local rules of positive and negative feedback to model the effect of fluids on failure in a heterogeneous medium in a single earthquake cycle. The model successfully predicts the observed fractal distribution of fractures, with a negative correlation between the predicted seismic b-value and the local crack extension force G. Such a negative correlation is found in laboratory tests involving (a) fluid-assisted crack growth in tension (b) water-saturated compressional deformation, and (c) in field results on an intermediate scale from hydraulic mining-induced seismicity all cases where G can be determined independently, and where the physical and chemical action of pore fluids is to varying degrees a controlled variable. For a finite local hardening mechanism (negative feedback), the model exhibits a systematic increase followed by a decrease in the seismic b-value as macroscopic failure is approached, similar to that found in water-saturated laboratory tests under controlled «undrained» conditions, and where dilatancy hardening is independently known to be a local mechanism of negative feedback. A similar pattern is suggested from selected field observations from natural seismicity, albeit with a lesser degree of statistical significance
Positive and negative feedback in the earthquake cycIe: the role of pore fluids on states of criticality in the crust
Fluids exert a strong physical and chemical control on local processes of rock fracture and friction. For example they may accelerate fracture by stress corrosion reactions or the development of overpressure (a form of positive feedback), or retard fracture by time-dependent stress relaxation or dilatant hardening (negative feed-back), thereby introducing a variable degree of local force conservation into the process. In particular the valve action of dynamic faulting may be important in tuning the Earth to a metastable state of incipient failure on all scales over several cycles, similar to current models of Self-Organised Criticality (SOC) as a paradigm for eartiquakes However laboratory results suggest that ordered fluctuations about this state may occur in a single cycle due to non conservative processes involving fluids which have the potential to be recognised, at least in the short term, in the scaling properties of earthquake statistics. Here we describe a 2-D cellular automaton which uses local rules of positive and negative feedback to model the effect of fluids on failure in a heterogeneous medium in a single earthquake cycle. The model successfully predicts the observed fractal distribution of fractures, with a negative correlation between the predicted seismic b-value and the local crack extension force G. Such a negative correlation is found in laboratory tests involving (a) fluid-assisted crack growth in tension (b) water-saturated compressional deformation, and (c) in field results on an intermediate scale from hydraulic mining-induced seismicity all cases where G can be determined independently, and where the physical and chemical action of pore fluids is to varying degrees a controlled variable. For a finite local hardening mechanism (negative feedback), the model exhibits a systematic increase followed by a decrease in the seismic b-value as macroscopic failure is approached, similar to that found in water-saturated laboratory tests under controlled «undrained» conditions, and where dilatancy hardening is independently known to be a local mechanism of negative feedback. A similar pattern is suggested from selected field observations from natural seismicity, albeit with a lesser degree of statistical significance